This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A284359 #22 Mar 19 2023 23:37:44 %S A284359 1,2,3,4,4,4,5,6,6,6,6,6,7,8,8,8,8,8,8,8,9,10,10,10,10,10,10,10,10,10, %T A284359 11,12,12,12,12,12,12,12,12,12,12,12,13,14,14,14,14,14,14,14,14,14,14, %U A284359 14,14,14,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,17 %N A284359 Double triangle (2*n+2 terms by row). Every row is 2*n + 1 followed by 2*n + 1 times 2*n + 2. %C A284359 In essence the same as A167991. - _R. J. Mathar_, Mar 27 2017 %F A284359 a(n) = A167381(n+1) - A167381(n). %e A284359 1, 2, %e A284359 3, 4, 4, 4, %e A284359 5, 6, 6, 6, 6, 6, %e A284359 7, 8, 8, 8, 8, 8, 8, 8, %e A284359 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, %e A284359 ... . %e A284359 The row sum is A000466(n+1). %t A284359 Table[2 n + 2 - Boole[k == 1], {n, 0, 8}, {k, 2 n + 2}] // Flatten (* _Michael De Vlieger_, Mar 25 2017 *) %o A284359 (PARI) for(n=0, 10, for(k=1, 2*n + 2, print1(2*n + 2 - (k==1), ", ");); print();) \\ _Indranil Ghosh_, Mar 26 2017, translated from Mathematica code %o A284359 (Python) %o A284359 for n in range(0, 11): %o A284359 print([2*n + 2 -(k==1) for k in range(1, 2*n + 3)]) %o A284359 # _Indranil Ghosh_, Mar 26 2017 %Y A284359 Cf. A000466, A005408, A103517 (main diagonal), A167381. %K A284359 nonn,tabf %O A284359 0,2 %A A284359 _Paul Curtz_, Mar 25 2017