This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A284417 #25 Jan 10 2018 03:35:49 %S A284417 1,0,2,3,6,16,48,145,420,60,1536,4800,1440,19579,65730,31500,840, %T A284417 290816,1053696,698880,53760,4942305,19332936,16367400,2388960,15120, %U A284417 94689280,399052800,410296320,93542400,2419200,2020278931,9146127870,11044008360,3526261200,200415600,332640,47523053568,230339788800,319018106880,133013422080,12986265600,127733760 %N A284417 Triangular array read by rows. T(n,k) is the number of rooted labeled trees on n nodes with exactly k vertices whose unique descendent is a leaf, n >= 1, 0 <= k <= floor((n-1)/2) + delta_{2,n}. %C A284417 Column k=0 is A052318(n) for n>2. %C A284417 Row sums = n^(n-1) = A000169(n). %H A284417 Philippe Flajolet and Robert Sedgewick, <a href="http://algo.inria.fr/flajolet/Publications/AnaCombi/anacombi.html">Analytic Combinatorics</a>, Cambridge Univ. Press, 2009, page 183. %F A284417 E.g.f. satisfies: A(x,y) = x exp(A(x,y)) - x^2 + y x^2. %e A284417 Triangle begins %e A284417 1, %e A284417 0, 2, %e A284417 3, 6, %e A284417 16, 48, %e A284417 145, 420, 60, %e A284417 1536, 4800, 1440, %e A284417 19579, 65730, 31500, 840, %e A284417 290816, 1053696, 698880, 53760, %e A284417 ... %e A284417 T(3,1)=6 because there are 6 labeled rooted trees (paths) o-o-o and these 6 trees have 1 vertex whose only descendent is a leaf. T(3,0) = 3 because there are 3 labeled trees of the form %e A284417 o %e A284417 / \ %e A284417 o o %e A284417 and these 3 trees have no such vertices. %t A284417 nn = 10; Range[0, nn]! CoefficientList[Series[-z^2 + u z^2 - ProductLog[-E^((-1 + u) z^2) z], {z, 0, nn}], {z, u}] // Grid %Y A284417 Cf. A055302. %K A284417 nonn,tabf %O A284417 1,3 %A A284417 _Geoffrey Critzer_, Mar 26 2017