cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A284417 Triangular array read by rows. T(n,k) is the number of rooted labeled trees on n nodes with exactly k vertices whose unique descendent is a leaf, n >= 1, 0 <= k <= floor((n-1)/2) + delta_{2,n}.

This page as a plain text file.
%I A284417 #25 Jan 10 2018 03:35:49
%S A284417 1,0,2,3,6,16,48,145,420,60,1536,4800,1440,19579,65730,31500,840,
%T A284417 290816,1053696,698880,53760,4942305,19332936,16367400,2388960,15120,
%U A284417 94689280,399052800,410296320,93542400,2419200,2020278931,9146127870,11044008360,3526261200,200415600,332640,47523053568,230339788800,319018106880,133013422080,12986265600,127733760
%N A284417 Triangular array read by rows. T(n,k) is the number of rooted labeled trees on n nodes with exactly k vertices whose unique descendent is a leaf, n >= 1, 0 <= k <= floor((n-1)/2) + delta_{2,n}.
%C A284417 Column k=0 is A052318(n) for n>2.
%C A284417 Row sums = n^(n-1) = A000169(n).
%H A284417 Philippe Flajolet and Robert Sedgewick, <a href="http://algo.inria.fr/flajolet/Publications/AnaCombi/anacombi.html">Analytic Combinatorics</a>, Cambridge Univ. Press, 2009, page 183.
%F A284417 E.g.f. satisfies: A(x,y) = x exp(A(x,y)) - x^2 + y x^2.
%e A284417 Triangle begins
%e A284417        1,
%e A284417        0,       2,
%e A284417        3,       6,
%e A284417       16,      48,
%e A284417      145,     420,     60,
%e A284417     1536,    4800,   1440,
%e A284417    19579,   65730,  31500,   840,
%e A284417   290816, 1053696, 698880, 53760,
%e A284417   ...
%e A284417 T(3,1)=6 because there are 6 labeled rooted trees (paths) o-o-o and these 6 trees have 1 vertex whose only descendent is a leaf. T(3,0) = 3 because there are 3 labeled trees of the form
%e A284417     o
%e A284417    / \
%e A284417   o   o
%e A284417 and these 3 trees have no such vertices.
%t A284417 nn = 10; Range[0, nn]! CoefficientList[Series[-z^2 + u z^2 - ProductLog[-E^((-1 + u) z^2) z], {z, 0, nn}], {z, u}] // Grid
%Y A284417 Cf. A055302.
%K A284417 nonn,tabf
%O A284417 1,3
%A A284417 _Geoffrey Critzer_, Mar 26 2017