A284441 Base-3 generalized Pascal triangle P_3 read by rows (see Comments for precise definition).
1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 2, 0, 0, 0, 0, 0, 1, 1, 1, 0, 2, 0, 0, 0, 0, 0, 1, 1, 2, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 2, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 3, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 1, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1
Offset: 0
Examples
Triangle begins: 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 2, 0, 0, 0, 0, 0, 1, 1, 1, 0, 2, 0, 0, 0, 0, 0, 1, 1, 2, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 2, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 3, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 1 ... The base-3 numbers are epsilon, 1, 2, 10, 11, 12, 20, 21, 22, 100, 101, 102, 110, 111, 112, 120, 121, 122, 200, 201, 202, 210, 211, 212, 220, 221, 222, ... The tenth number 101 contains eps 1 2 10 11 12 20 21 22 100 101 respectively .1..2.0..1..1..0..0..0..0..0...1 times, which is row 10 of the triangle.
Links
- Manon Stipulanti, Table of n, a(n) for n = 0..29645
- J. Leroy, M. Rigo, and M. Stipulanti, Counting the number of non-zero coefficients in rows of generalized Pascal triangles, Discrete Mathematics 340 (2017), 862-881.
- Julien Leroy, Michel Rigo, Manon Stipulanti, Counting Subwords Occurrences in Base-b Expansions, arXiv:1705.10065 [math.CO], 2017.
- Julien Leroy, Michel Rigo, Manon Stipulanti, Counting Subwords Occurrences in Base-b Expansions, Integers, Electronic Journal of Combinatorial Number Theory 18A (2018), #A13.
- Manon Stipulanti, Convergence of Pascal-Like Triangles in Parry-Bertrand Numeration Systems, arXiv:1801.03287 [math.CO], 2018.
Crossrefs
Programs
-
Mathematica
coeff[u_, v_] := coeff[u, v] = If[Length[v] == 0, 1, If[Length[u] < Length[v], 0, coeff[Drop[u, -1], v] + ((Last[u] == Last[v]) /. {True -> 1, False -> 0}) coeff[Drop[u, -1], Drop[v, -1]]]] P3 = Table[coeff[IntegerDigits[i, 3] /. {0} -> {},IntegerDigits[j, 3] /. {0} -> {}], {i, 0, 3^5 - 1}, {j, 0, i}] //Flatten
Comments