This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A284458 #55 Feb 16 2025 08:33:43 %S A284458 1,0,2,156,16920,2764880,650696400,210105425628,89425255439744, %T A284458 48588905856409920,32845298636854828800,27047610425293718239100, %U A284458 26664178085975252011318272,31009985808408471580603417296,42017027730087624384021945067520 %N A284458 Number of pairs (f,g) of endofunctions on [n] such that the composite function gf has no fixed point. %C A284458 Consider n boys and n girls, each boy secretly loving a girl and vice versa. The probability that no couple could be formed is a(n)/n^(2n). %C A284458 a(n) is the number of pairs of binary matrices n X n (M, N), M having only one 1 per row, N having only one 1 per column, such that M + N has no coefficient equal to 2. %C A284458 Limit_{n -> infinity} a(n)/n^(2n) = 1/e. %H A284458 Robert Israel, <a href="/A284458/b284458.txt">Table of n, a(n) for n = 0..214</a> %H A284458 Math StackExchange, <a href="https://math.stackexchange.com/questions/713370/an-unexpected-application-of-non-trivial-combinatorics">An unexpected application of non-trivial combinatorics</a>, 2014. %H A284458 Math StackExchange, <a href="https://math.stackexchange.com/questions/982134/couple-probability">Couple Probability</a>, 2014. %H A284458 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/ConfluentHypergeometricFunctionoftheSecondKind.html">Confluent Hypergeometric Function of the Second Kind</a> %F A284458 a(n) = Sum_{k=0..n} (-1)^k * binomial(n,k)^2 * k! * n^(2*(n-k)). %F A284458 a(n) = A343700(n)/A350558(n). - _Dan Eilers_, Jan 17 2023 %e A284458 For two boys A,B and two girls A',B', the a(2) possibilities are: %e A284458 A loves A' who loves B who loves B' who loves A; %e A284458 A loves B' who loves B who loves A' who loves A. %p A284458 a:=n->add((-1)^k*binomial(n,k)^2*k!*n^(2*(n-k)),k=0..n): %p A284458 seq(a(n),n=0..15); %t A284458 Table[Sum[(-1)^k Binomial[n,k]^2 * k! * n^(2*(n - k)), {k, 0, n}], {n, 1, 15}] (* _Indranil Ghosh_, Mar 27 2017 *) %t A284458 Table[HypergeometricU[-n, 1, n^2], {n, 1, 15}] (* _Jean-François Alcover_, Mar 29 2017 *) %o A284458 (PARI) a(n) = sum(k=0, n, (-1)^k * binomial(n,k)^2 * k! * n^(2*(n-k))); \\ _Michel Marcus_, Apr 04 2017 %Y A284458 Cf. A065440, A350558, A343700. %K A284458 nonn %O A284458 0,3 %A A284458 _Robert FERREOL_, Mar 27 2017