This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A284466 #20 Apr 21 2021 11:25:22 %S A284466 1,1,1,2,1,2,6,2,1,20,8,2,60,2,10,450,1,2,726,2,140,3321,14,2,5896, %T A284466 572,16,26426,264,2,394406,2,1,226020,20,51886,961584,2,22,2044895, %U A284466 38740,2,20959503,2,676,478164163,26,2,56849086,31201,652968,184947044,980,2,1273706934,6620376,153366,1803937344 %N A284466 Number of compositions (ordered partitions) of n into odd divisors of n. %H A284466 Alois P. Heinz, <a href="/A284466/b284466.txt">Table of n, a(n) for n = 0..2000</a> %H A284466 <a href="/index/Com#comp">Index entries for sequences related to compositions</a> %F A284466 a(n) = [x^n] 1/(1 - Sum_{d|n, d positive odd} x^d). %F A284466 a(n) = 1 if n is a power of 2. %F A284466 a(n) = 2 if n is an odd prime. %e A284466 a(10) = 8 because 10 has 4 divisors {1, 2, 5, 10} among which 2 are odd {1, 5} therefore we have [5, 5], [5, 1, 1, 1, 1, 1], [1, 5, 1, 1, 1, 1], [1, 1, 5, 1, 1, 1], [1, 1, 1, 5, 1, 1], [1, 1, 1, 1, 5, 1], [1, 1, 1, 1, 1, 5] and [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]. %p A284466 with(numtheory): %p A284466 a:= proc(n) option remember; local b, l; %p A284466 l, b:= select(x-> is(x:: odd), divisors(n)), %p A284466 proc(m) option remember; `if`(m=0, 1, %p A284466 add(`if`(j>m, 0, b(m-j)), j=l)) %p A284466 end; b(n) %p A284466 end: %p A284466 seq(a(n), n=0..60); # _Alois P. Heinz_, Mar 30 2017 %t A284466 Table[d = Divisors[n]; Coefficient[Series[1/(1 - Sum[Boole[Mod[d[[k]], 2] == 1] x^d[[k]], {k, Length[d]}]), {x, 0, n}], x, n], {n, 0, 57}] %o A284466 (Python) %o A284466 from sympy import divisors %o A284466 from sympy.core.cache import cacheit %o A284466 @cacheit %o A284466 def a(n): %o A284466 l=[x for x in divisors(n) if x%2] %o A284466 @cacheit %o A284466 def b(m): return 1 if m==0 else sum(b(m - j) for j in l if j <= m) %o A284466 return b(n) %o A284466 print([a(n) for n in range(61)]) # _Indranil Ghosh_, Aug 01 2017, after Maple code %Y A284466 Cf. A000045, A005408, A032021, A100346, A171565. %K A284466 nonn %O A284466 0,4 %A A284466 _Ilya Gutkovskiy_, Mar 27 2017