This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A284476 #8 Mar 28 2017 14:50:32 %S A284476 1,2,2,4,2,6,2,4,4,6,2,12,2,6,6,16,2,12,2,12,6,6,2,12,4,6,4,12,2,30,2, %T A284476 4,6,6,6,36,2,6,6,12,2,30,2,12,12,6,2,48,4,12,6,12,2,12,6,12,6,6,2,60, %U A284476 2,6,12,64,6,30,2,12,6,30,2,36,2,6,12,12,6,30 %N A284476 Smallest number with same factorization shape as n. %C A284476 A284456 defines the factorization shape of a number. %C A284476 A284456 corresponds to the fixed points of this sequence. %H A284476 Rémy Sigrist, <a href="/A284476/b284476.txt">Table of n, a(n) for n = 1..10000</a> %F A284476 To compute a(n): %F A284476 1) Factorize n: n = p_1^e_1 * ... * p_k^e_k, %F A284476 2) Compute a(e_i) for i=1..k, %F A284476 3) Sort the values computed at step 2 in descending order (keeping duplicates): you obtain, say, f_1 >= ... >= f_k, %F A284476 4) a(n) = Prod_{i=1..k} prime(i)^f_i. %o A284476 (PARI) a(n) = my (f=factor(n)); \ %o A284476 my (x=vecsort(vector(#f~, i, a(f[i,2])),,4)); \ %o A284476 return (prod(i=1, #x, prime(i)^x[i])) %Y A284476 Cf. A284456. %K A284476 nonn %O A284476 1,2 %A A284476 _Rémy Sigrist_, Mar 27 2017