This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A284483 #14 Feb 16 2025 08:33:43 %S A284483 1,0,111,1101,11110,111101,1111110,11111101,111111110,1111111101, %T A284483 11111111110,111111111101,1111111111110,11111111111101, %U A284483 111111111111110,1111111111111101,11111111111111110,111111111111111101,1111111111111111110,11111111111111111101 %N A284483 Binary representation of the x-axis, from the left edge to the origin, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 961", based on the 5-celled von Neumann neighborhood. %C A284483 Initialized with a single black (ON) cell at stage zero. %D A284483 S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170. %H A284483 Robert Price, <a href="/A284483/b284483.txt">Table of n, a(n) for n = 0..126</a> %H A284483 Robert Price, <a href="/A284483/a284483.tmp.txt">Diagrams of first 20 stages</a> %H A284483 N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015 %H A284483 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a> %H A284483 S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a> %H A284483 Wolfram Research, <a href="http://atlas.wolfram.com/">Wolfram Atlas of Simple Programs</a> %H A284483 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a> %H A284483 <a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a> %H A284483 <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a> %F A284483 Conjectures from _Colin Barker_, Mar 28 2017: (Start) %F A284483 G.f.: (1 - 10*x + 110*x^2 + x^3 - 11*x^4 + 10*x^5) / ((1 - x)*(1 + x)*(1 - 10*x)). %F A284483 a(n) = (10^(n+1) - 10)/9 for n>2 and even. %F A284483 a(n) = (10^(n+1) - 91)/9 for n>2 and odd. %F A284483 a(n) = 10*a(n-1) + a(n-2) - 10*a(n-3) for n>5. %F A284483 (End) %t A284483 CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}]; %t A284483 code = 961; stages = 128; %t A284483 rule = IntegerDigits[code, 2, 10]; %t A284483 g = 2 * stages + 1; (* Maximum size of grid *) %t A284483 a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *) %t A284483 ca = a; %t A284483 ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}]; %t A284483 PrependTo[ca, a]; %t A284483 (* Trim full grid to reflect growth by one cell at each stage *) %t A284483 k = (Length[ca[[1]]] + 1)/2; %t A284483 ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}]; %t A284483 Table[FromDigits[Part[ca[[i]] [[i]], Range[1, i]], 10], {i, 1, stages - 1}] %Y A284483 Cf. A284484, A101622, A284485. %K A284483 nonn,easy %O A284483 0,3 %A A284483 _Robert Price_, Mar 27 2017