A284522 Worst cases for Hart's one-line factorization (OLF) method with multiplier M = 1, see comments.
6, 85, 259, 527, 1177, 1963, 2881, 6403, 6887, 12319, 23701, 40363, 65473, 93011, 144377, 181429, 273487, 337499, 426347, 557983, 702157, 851927, 1044413, 1295017, 1437599, 1763537, 2211119, 2556751, 2982503, 3553027, 3853327
Offset: 1
Keywords
Examples
OLF factors 6 on step 2: s = ceil(sqrt(2*6)) = 4, s^2 = 4 mod 6; 4 = 2^2, gcd(6, 4-2) = 2. OLF factors 85 on step 3: s = ceil(sqrt(3*85)) = 16, s^2 = 1 mod 85; 1 = 1^2, gcd(85, 16-1) = 5. OLF factors 259 on step 5: s = ceil(sqrt(5*259)) = 36, s^2 = 1 mod 259; 1 = 1^2, gcd(259, 36-1) = 7. OLF factors 527 on step 8: s = ceil(sqrt(8*527)) = 65, s^2 = 9 mod 527; 9 = 3^2, gcd(527, 65-3) = 31. OLF factors 1177 on step 9: s = ceil(sqrt(9*1177)) = 103, s^2 = 16 mod 1177; 16 = 4^2, gcd(1177, 103-4) = 11.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..214
- William B. Hart, A one line factoring algorithm, Journal of the Australian Mathematical Society 92 (2012), pp. 61-69.
Crossrefs
Subsequence of A138109.
Programs
-
PARI
listA138109(lim)=if(lim<6, return([])); my(v=List([6])); forprime(p=3, sqrtint(1+lim\=1)-1, forprime(q=p+2, min(p^2-2, lim\p), listput(v, p*q))); Set(v) g(n)=for(i=1, n, if(issquare((sqrtint(i*n-1)+1)^2%n), return(i))) list(lim)=my(u=Vecsmall(listA138109(lim)),v=List(),r,t); for(i=1,#u, t=g(u[i]); if(t>r, r=t; listput(v,u[i]))); u=0; Vec(v) \\ Charles R Greathouse IV, Mar 28 2017
-
PARI
make(from,to)=my(v=List()); from=ceil(from); forprime(p=max(sqrtnint(from,3)+1,3),sqrtint(1+to\=1)-1, forprime(q=max(p+2,from/p),min(p^2-2,to\p), listput(v,p*q))); Set(v) g(n)=for(i=1, n, if(issquare((sqrtint(i*n-1)+1)^2%n), return(i))) list(lim)=my(u,v=List([6]),r,t,step=10^7); forstep(n=85,lim,step, u=make(n,min(n+step-1,lim)); for(i=1,#u,t=g(u[i]); if(t>r, r=t; listput(v,u[i]); print1(u[i]", ")))); Vec(v) \\ Charles R Greathouse IV, Apr 03 2017
Comments