cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A284553 Prime factorization representation of Stern polynomials B(n,x) with only the even powers of x present: a(n) = A247503(A260443(n)).

This page as a plain text file.
%I A284553 #33 Sep 09 2017 19:22:16
%S A284553 1,2,1,2,5,2,5,10,1,10,25,10,5,50,5,10,11,10,25,250,5,250,125,50,11,
%T A284553 250,25,250,55,50,55,110,1,110,275,250,55,6250,125,1250,121,1250,625,
%U A284553 31250,55,6250,1375,550,11,2750,275,6250,605,6250,1375,13750,11,2750,3025,2750,55,6050,55,110,17,110,275,30250,55,68750,15125,13750,121
%N A284553 Prime factorization representation of Stern polynomials B(n,x) with only the even powers of x present: a(n) = A247503(A260443(n)).
%C A284553 a(n) = Prime factorization representation of Stern polynomials B(n,x) where the coefficients of odd powers of x are replaced by zeros. In other words, only the constant term and other terms with even powers of x are present. See the examples.
%C A284553 Proof that A001222(a(1+n)) matches _Ralf Stephan_'s formula for A000360(n): Consider functions A001222(a(n)) and A001222(A284554(n)) (= A284556(n)). They can be reduced to the following mutual recurrence pair: b(0) = 0, b(1) = 1, b(2n) = c(n), b(2n+1) = b(n) + b(n+1) and c(0) = c(1) = 0, c(2n) = b(n), c(2n+1) = c(n) + c(n+1). From the definitions it follows that the difference b(n) - c(n) for even n is b(2n) - c(2n) = -(b(n) - c(n)), and for odd n, b(2n+1) - c(2n+1) = (b(n)+b(n+1))-(c(n)+c(n+1)) = (b(n)-c(n)) + (b(n+1)-c(n+1)). Then by induction, if we assume that for 3n, 3n+1, 3n+2, ..., 6n, the value of difference b(n)-c(n) is always [0, +1, -1; repeated], it follows that from 6n to 12n the differences are [0, +1, -1; 0, +1, -1; repeated], which proves that b(n) - c(n) = A102283(n). As an implication, recurrence b can be defined without referring to c as: b(0) = 0, b(1) = 1, b(2n) = b(n) - A102283(n), b(2n+1) = b(n)+b(n+1), and this is equal to _Ralf Stephan_'s Oct 05 2003 formula for A000360, but shifted once right, with prepended zero.
%H A284553 Antti Karttunen, <a href="/A284553/b284553.txt">Table of n, a(n) for n = 0..8192</a>
%H A284553 S. Klavzar, U. Milutinovic and C. Petr, <a href="http://dx.doi.org/10.1016/j.aam.2006.01.003">Stern polynomials</a>, Adv. Appl. Math. 39 (2007) 86-95.
%F A284553 a(0) = 1, a(1) = 2, a(2n) = A003961(A284554(n)), a(2n+1) = a(n)*a(n+1).
%F A284553 Other identities. For all n >= 0:
%F A284553 a(n) = A247503(A260443(n)).
%F A284553 a(n) = A260443(n) / A284554(n).
%F A284553 a(n) = A064989(A284554(2n)).
%F A284553 A001222(a(1+n)) = A000360(n). [Proof in Comments section.]
%e A284553 n A260443(n)                      Stern            With odd powers
%e A284553              prime factorization  polynomial       of x cleared  -> a(n)
%e A284553 ------------------------------------------------------------------------
%e A284553 0       1    (empty)              B_0(x) = 0                    0  |  1
%e A284553 1       2    p_1                  B_1(x) = 1                    1  |  2
%e A284553 2       3    p_2                  B_2(x) = x                    0  |  1
%e A284553 3       6    p_2 * p_1            B_3(x) = x + 1                1  |  2
%e A284553 4       5    p_3                  B_4(x) = x^2                x^2  |  5
%e A284553 5      18    p_2^2 * p_1          B_5(x) = 2x + 1               1  |  2
%e A284553 6      15    p_3 * p_2            B_6(x) = x^2 + x            x^2  |  5
%e A284553 7      30    p_3 * p_2 * p_1      B_7(x) = x^2 + x + 1    x^2 + 1  | 10
%e A284553 8       7    p_4                  B_8(x) = x^3                  0  |  1
%e A284553 9      90    p_3 * p_2^2 * p_1    B_9(x) = x^2 + 2x + 1   x^2 + 1  | 10
%e A284553 10     75    p_3^2 * p_2          B_10(x) = 2x^2 + x         2x^2  | 25
%t A284553 a[n_] := a[n] = Which[n < 2, n + 1, EvenQ@ n, Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[# == 1] &@ a[n/2], True, a[#] a[# + 1] &[(n - 1)/2]]; Table[Times @@ (FactorInteger[#] /. {p_, e_} /; e > 0 :> (p^Mod[PrimePi@ p, 2])^e) &@ a@ n, {n, 0, 72}] (* _Michael De Vlieger_, Apr 05 2017 *)
%o A284553 (PARI)
%o A284553 A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From _Michel Marcus_
%o A284553 A260443(n) = if(n<2, n+1, if(n%2, A260443(n\2)*A260443(n\2+1), A003961(A260443(n\2)))); \\ Cf. _Charles R Greathouse IV_'s code for "ps" in A186891 and A277013.
%o A284553 A247503(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 2] *= (primepi(f[i, 1]) % 2); ); factorback(f); } \\ After _Michel Marcus_
%o A284553 A284553(n) = A247503(A260443(n));
%o A284553 (Scheme) (define (A284553 n) (A247503 (A260443 n)))
%Y A284553 Cf. A000360, A001222, A003961, A064989, A102283, A247503, A260443, A284554, A284556, A284563 (odd bisection).
%K A284553 nonn
%O A284553 0,2
%A A284553 _Antti Karttunen_, Mar 29 2017