cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A284554 Prime factorization representation of Stern polynomials B(n,x) with only the odd powers of x present: a(n) = A248101(A260443(n)).

This page as a plain text file.
%I A284554 #15 Apr 06 2017 21:21:37
%S A284554 1,1,3,3,1,9,3,3,7,9,3,27,7,9,21,21,1,63,21,27,49,81,21,189,7,63,147,
%T A284554 189,7,441,21,21,13,63,21,1323,49,567,1029,1323,7,3969,1029,1701,343,
%U A284554 3969,147,1323,13,441,1029,9261,49,27783,1029,1323,91,3087,147,9261,91,441,273,273,1,819,273,1323,637,27783,1029,64827,91,27783,50421,583443,343
%N A284554 Prime factorization representation of Stern polynomials B(n,x) with only the odd powers of x present: a(n) = A248101(A260443(n)).
%C A284554 a(n) = Prime factorization representation of Stern polynomials B(n,x) where the coefficients of even powers of x (including the constant term) are replaced by zeros. In other words, only the terms with odd powers of x are present. See the examples.
%H A284554 Antti Karttunen, <a href="/A284554/b284554.txt">Table of n, a(n) for n = 0..8192</a>
%F A284554 a(0) = a(1) = 1, a(2n) = A003961(A284553(n)), a(2n+1) = a(n)*a(n+1).
%F A284554 Other identities. For all n >= 0:
%F A284554 a(n) = A248101(A260443(n)).
%F A284554 a(n) = A260443(n) / A284553(n).
%F A284554 a(n) = A064989(A284553(2n)).
%F A284554 A001222(a(n)) = A284556(n).
%e A284554 n A260443(n)                      Stern            With even powers
%e A284554              prime factorization  polynomial       of x cleared  -> a(n)
%e A284554 ------------------------------------------------------------------------
%e A284554 0       1    (empty)              B_0(x) = 0                    0  |  1
%e A284554 1       2    p_1                  B_1(x) = 1                    0  |  1
%e A284554 2       3    p_2                  B_2(x) = x                    x  |  3
%e A284554 3       6    p_2 * p_1            B_3(x) = x + 1                x  |  3
%e A284554 4       5    p_3                  B_4(x) = x^2                  0  |  1
%e A284554 5      18    p_2^2 * p_1          B_5(x) = 2x + 1              2x  |  9
%e A284554 6      15    p_3 * p_2            B_6(x) = x^2 + x              x  |  3
%e A284554 7      30    p_3 * p_2 * p_1      B_7(x) = x^2 + x + 1          x  |  3
%e A284554 8       7    p_4                  B_8(x) = x^3                x^3  |  7
%e A284554 9      90    p_3 * p_2^2 * p_1    B_9(x) = x^2 + 2x + 1        2x  |  9
%e A284554 10     75    p_3^2 * p_2          B_10(x) = 2x^2 + x            x  |  3
%t A284554 a[n_] := a[n] = Which[n < 2, n + 1, EvenQ@ n, Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[# == 1] &@ a[n/2], True, a[#] a[# + 1] &[(n - 1)/2]]; Table[Times @@ (FactorInteger[#] /. {p_, e_} /; e > 0 :> (p^Mod[PrimePi@ p + 1, 2])^e) &@ a@ n, {n, 0, 76}] (* _Michael De Vlieger_, Apr 05 2017 *)
%o A284554 (PARI)
%o A284554 A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From _Michel Marcus_
%o A284554 A260443(n) = if(n<2, n+1, if(n%2, A260443(n\2)*A260443(n\2+1), A003961(A260443(n\2)))); \\ Cf. _Charles R Greathouse IV_'s code for "ps" in A186891 and A277013.
%o A284554 A248101(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 2] *= (primepi(f[i, 1])+1) % 2; ); factorback(f); } \\ After _Michel Marcus_
%o A284554 A284554(n) = A248101(A260443(n));
%o A284554 (Scheme) (define (A284554 n) (A248101 (A260443 n)))
%Y A284554 Cf. A001222, A003961, A064989, A248101, A260443, A284553, A284556, A284564 (odd bisection).
%K A284554 nonn
%O A284554 0,3
%A A284554 _Antti Karttunen_, Mar 29 2017