This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A284592 #30 Jun 10 2021 07:41:36 %S A284592 1,1,1,2,0,2,3,1,1,3,5,1,2,1,5,7,2,3,3,2,7,11,2,5,4,5,2,11,15,4,6,7,7, %T A284592 6,4,15,22,4,10,8,12,8,10,4,22,30,7,12,14,14,14,14,12,7,30,42,8,18,16, %U A284592 24,16,24,16,18,8,42,56,12,23,25,28,28,28,28,25,23,12,56 %N A284592 Square array read by antidiagonals: T(n,k) is the number of pairs of partitions of n and k respectively, such that the pair of partitions have no part in common. %C A284592 Compare with A284593. %H A284592 Alois P. Heinz, <a href="/A284592/b284592.txt">Antidiagonals n = 0..200, flattened</a> %H A284592 H. S. Wilf, <a href="https://www.math.upenn.edu/~wilf/PIMS/PIMSLectures.pdf">Lectures on Integer Partitions</a> %F A284592 O.g.f. Product_{j >= 1} (1 + x^j/(1 - x^j) + y^j/(1 - y^j)) = Sum_{n,k >= 0} T(n,k)*x^n*y^k (see Wilf, Example 7). %F A284592 Antidiagonal sums are A015128. %e A284592 Square array begins %e A284592 n\k| 0 1 2 3 4 5 6 7 8 9 10 %e A284592 - - - - - - - - - - - - - - - - - - - - - - - %e A284592 0 | 1 1 2 3 5 7 11 15 22 30 42: A000041 %e A284592 1 | 1 0 1 1 2 2 4 4 7 8 12: A002865 %e A284592 2 | 2 1 2 3 5 6 10 12 18 23 32 %e A284592 3 | 3 1 3 4 7 8 14 16 25 31 44 %e A284592 4 | 5 2 5 7 12 14 24 28 43 54 76 %e A284592 5 | 7 2 6 8 14 16 28 31 49 60 85 %e A284592 6 | 11 4 10 14 24 28 48 55 85 106 149 %e A284592 7 | 15 4 12 16 28 31 55 60 95 115 163 %e A284592 8 | 22 7 18 25 43 49 85 95 148 182 256 %e A284592 9 | 30 8 23 31 54 60 106 115 182 220 311 %e A284592 10 | 42 12 32 44 76 85 149 163 256 311 438 %e A284592 ... %e A284592 T(4,3) = 7: the 7 pairs of partitions of 4 and 3 with no parts in common are (4, 3), (4, 2 + 1), (4, 1 + 1 + 1), (2 + 2, 3), (2 + 2, 1 + 1 + 1), (2 + 1 + 1 , 3) and (1 + 1 + 1 + 1, 3). %p A284592 #A284592 as a square array %p A284592 ser := taylor(taylor(mul(1 + x^j/(1 - x^j) + y^j/(1 - y^j), j = 1..10), x, 11), y, 11): %p A284592 convert(ser, polynom): %p A284592 s := convert(%, polynom): %p A284592 with(PolynomialTools): %p A284592 for n from 0 to 10 do CoefficientList(coeff(s, y, n), x) end do; %p A284592 # second Maple program: %p A284592 b:= proc(n, k, i) option remember; `if`(n=0 and %p A284592 (k=0 or i=1), 1, `if`(i<1, 0, b(n, k, i-1)+ %p A284592 add(b(sort([n-i*j, k])[], i-1), j=1..n/i)+ %p A284592 add(b(sort([n, k-i*j])[], i-1), j=1..k/i))) %p A284592 end: %p A284592 A:= (n, k)-> (l-> b(l[1], l[2]$2))(sort([n, k])): %p A284592 seq(seq(A(n, d-n), n=0..d), d=0..12); # _Alois P. Heinz_, Apr 02 2017 %t A284592 Table[Total@ Boole@ Map[! IntersectingQ @@ Map[Union, #] &, Tuples@ {IntegerPartitions@ #, IntegerPartitions@ k}] &[n - k], {n, 0, 11}, {k, 0, n}] // Flatten (* _Michael De Vlieger_, Apr 02 2017 *) %t A284592 b[n_, k_, i_] := b[n, k, i] = If[n == 0 && %t A284592 (k == 0 || i == 1), 1, If[i < 1, 0, b[n, k, i - 1] + %t A284592 Sum[b[Sequence @@ Sort[{n - i*j, k}], i - 1], {j, 1, n/i}] + %t A284592 Sum[b[Sequence @@ Sort[{n, k - i*j}], i - 1], {j, 1, k/i}]]]; %t A284592 A[n_, k_] := Function [l, b[l[[1]], l[[2]], l[[2]]]][Sort[{n, k}]]; %t A284592 Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 12}] // Flatten (* _Jean-François Alcover_, Jun 07 2021, after _Alois P. Heinz_ *) %Y A284592 Cf. A000041 (row 0), A002865 (row 1), A015128 (antidiagonal sums), A284593. %Y A284592 Main diagonal gives A054440 or 2*A260669 (for n>0). %K A284592 nonn,tabl,easy %O A284592 0,4 %A A284592 _Peter Bala_, Mar 30 2017