This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A284593 #30 Apr 10 2025 06:47:57 %S A284593 1,1,1,1,0,1,2,1,1,2,2,1,0,1,2,3,1,1,1,1,3,4,2,2,2,2,2,4,5,2,2,2,2,2, %T A284593 2,5,6,3,2,3,2,3,2,3,6,8,3,3,4,3,3,4,3,3,8,10,5,4,6,5,6,5,6,4,5,10,12, %U A284593 5,5,6,5,6,6,5,6,5,5,12,15,7,6,8,7,8,8,8,7,8,6,7,15 %N A284593 Square array read by antidiagonals: T(n,k) = the number of pairs of partitions of n and k respectively, such that each partition is composed of distinct parts and the pair of partitions have no part in common. %C A284593 Compare with A284592. %H A284593 Alois P. Heinz, <a href="/A284593/b284593.txt">Antidiagonals n = 0..200, flattened</a> %H A284593 H. S. Wilf, <a href="https://www.math.upenn.edu/~wilf/PIMS/PIMSLectures.pdf">Lectures on Integer Partitions</a> %F A284593 O.g.f. Product_{j >= 1} (1 + x^j + y^j) = Sum_{n,k >= 0} T(n,k)*x^n*y^k (see Wilf, Example 7). %F A284593 Antidiagonal sums are A032302. %e A284593 Square array begins %e A284593 n\k| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 %e A284593 - - - - - - - - - - - - - - - - - - - - - - - - - - - - %e A284593 0 | 1 1 1 2 2 3 4 5 6 8 10 12 15 18: A000009 %e A284593 1 | 1 0 1 1 1 2 2 3 3 5 5 7 8 10: A096765 %e A284593 2 | 1 1 0 1 2 2 2 3 4 5 6 7 9 11: A015744 %e A284593 3 | 2 1 1 2 2 3 4 6 6 8 9 12 15 18 %e A284593 4 | 2 1 2 2 2 3 5 5 7 9 10 14 15 19 %e A284593 5 | 3 2 2 3 3 6 6 8 9 12 16 19 22 28 %e A284593 6 | 4 2 2 4 5 6 8 9 11 16 18 22 27 33 %e A284593 7 | 5 3 3 6 5 8 9 14 16 20 23 29 34 41 %e A284593 ... %e A284593 T(3,7) = 6: the six pairs of partitions of 3 and 7 into distinct parts and with no parts in common are (3, 7), (3, 6 + 1), (3, 5 + 2), (3, 4 + 2 + 1), (2 + 1, 7) and (2 + 1, 4 + 3). %p A284593 # A284593 as a square array %p A284593 ser := taylor(taylor(mul(1 + x^j + y^j, j = 1..10), x, 11), y, 11): %p A284593 convert(ser, polynom): %p A284593 s := convert(%, polynom): %p A284593 with(PolynomialTools): %p A284593 for n from 0 to 10 do CoefficientList(coeff(s, y, n), x) end do; %p A284593 # second Maple program: %p A284593 b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, %p A284593 b(n, i-1)+expand((x^i+1)*b(n-i, min(n-i, i-1))))) %p A284593 end: %p A284593 T:= (n, k)-> coeff(b(n+k$2), x, k): %p A284593 seq(seq(T(n, d-n), n=0..d), d=0..14); # _Alois P. Heinz_, Aug 24 2019 %t A284593 nmax = 12; M = CoefficientList[#, y][[;; nmax+1]]& /@ (Product[1 + x^j + y^j, {j, 1, nmax}] + O[x]^(nmax+1) // CoefficientList[#, x]& // Expand); %t A284593 T[n_, k_] := M[[n+1, k+1]]; %t A284593 Table[T[n-k, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Dec 07 2019 *) %Y A284593 Rows n=0..2 give A000009, A096765, A015744. %Y A284593 Main diagonal gives A365662. %Y A284593 Antidiagonal sums give A032302. %Y A284593 Cf. A284592, A322210. %K A284593 nonn,tabl,easy %O A284593 0,7 %A A284593 _Peter Bala_, Mar 30 2017