cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A284612 Number of partitions of n such that the (sum of distinct odd parts) < n/2.

Original entry on oeis.org

0, 1, 2, 4, 4, 7, 9, 13, 22, 31, 40, 53, 75, 98, 126, 156, 215, 272, 375, 461, 602, 743, 971, 1175, 1491, 1817, 2359, 2831, 3499, 4210, 5326, 6329, 7956, 9501, 11833, 13994, 17155, 20324, 24845, 29189, 35688, 42016, 50803, 59379, 71893, 84106, 100369, 116691
Offset: 1

Views

Author

Clark Kimberling, Mar 30 2017

Keywords

Examples

			a(6) counts these 7 partitions: 6, 41, 411, 222, 2211, 21111, 111111.
		

Crossrefs

Programs

  • Mathematica
    Table[p = IntegerPartitions[n];
    Length[Select[Table[Total[Select[DeleteDuplicates[p[[k]]], OddQ]], {k, Length[p]}], # < n/2 &]], {n, 55}]

A284614 Number of partitions of n such that the (sum of distinct odd parts) > n/2.

Original entry on oeis.org

1, 0, 1, 1, 3, 3, 6, 4, 8, 10, 16, 16, 26, 36, 50, 55, 82, 85, 115, 136, 190, 216, 284, 340, 467, 500, 651, 801, 1066, 1181, 1516, 1665, 2187, 2393, 3050, 3466, 4482, 5028, 6340, 6951, 8895, 9953, 12458, 13640, 17241, 19649, 24385, 26386, 33078, 36138, 44569
Offset: 1

Views

Author

Clark Kimberling, Apr 02 2017

Keywords

Examples

			a(5) counts these 3 partitions: 5, 32, 311.
		

Crossrefs

Programs

  • Mathematica
    Table[p = IntegerPartitions[n];
     Length[Select[Table[Total[Select[DeleteDuplicates[p[[k]]], OddQ]], {k, Length[p]}], # > n/2 &]], {n, 55}]

A284615 Number of partitions of n such that the (sum of distinct odd parts) >= n/2.

Original entry on oeis.org

1, 1, 1, 1, 3, 4, 6, 9, 8, 11, 16, 24, 26, 37, 50, 75, 82, 113, 115, 166, 190, 259, 284, 400, 467, 619, 651, 887, 1066, 1394, 1516, 2020, 2187, 2809, 3050, 3983, 4482, 5691, 6340, 8149, 8895, 11158, 12458, 15796, 17241, 21452, 24385, 30582, 33078, 40775
Offset: 1

Views

Author

Clark Kimberling, Apr 02 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[p = IntegerPartitions[n];
     Length[Select[Table[Total[Select[DeleteDuplicates[p[[k]]], OddQ]], {k, Length[p]}], # >= n/2 &]], {n, 55}]

Formula

a(5) counts these 3 partitions: 5, 32, 311.

A284608 Number of partitions of n such that the (sum of distinct odd parts) = floor(n/2).

Original entry on oeis.org

0, 1, 2, 0, 0, 1, 2, 5, 6, 1, 3, 8, 9, 1, 5, 20, 20, 28, 45, 30, 29, 43, 69, 60, 51, 119, 174, 86, 75, 213, 307, 355, 375, 416, 583, 517, 541, 663, 923, 1198, 1291, 1205, 1650, 2156, 2365, 1803, 2469, 4196, 4596, 4637, 6073, 6684, 7374, 6740, 8829, 12345
Offset: 1

Views

Author

Clark Kimberling, Mar 30 2017

Keywords

Examples

			a(8) counts these 5 partitions: 431, 3311, 3221, 32111, 311111.
		

Crossrefs

Programs

  • Mathematica
    Table[p = IntegerPartitions[n]; Length[Select[Table[Total[Select[DeleteDuplicates[p[[k]]], OddQ]], {k, Length[p]}], # == Floor[n/2] &]], {n, 60}] (* Peter J. C. Moses, Mar 29 2017 *)
Showing 1-4 of 4 results.