A284621 Positions of 0 in A284620.
1, 5, 11, 15, 21, 27, 31, 37, 41, 47, 53, 57, 63, 69, 73, 79, 83, 89, 95, 99, 105, 109, 115, 121, 125, 131, 137, 141, 147, 151, 157, 163, 167, 173, 179, 183, 189, 193, 199, 205, 209, 215, 219, 225, 231, 235, 241, 247, 251, 257, 261, 267, 273, 277, 283, 287
Offset: 1
Examples
As a word, A284620 = 012101212101210121..., in which 0 is in positions 1,5,11,15,...
Links
- Clark Kimberling, Table of n, a(n) for n = 1..10000
- J.-P. Allouche and F. M. Dekking, Generalized Beatty sequences and complementary triples, Moscow Journal of Combinatorics and Number Theory 8, 325-341 (2019).
- M. Dekking, Morphic words, Beatty sequences and integer images of the Fibonacci language, Theoretical Computer Science 809, 407-417 (2020).
Programs
-
Mathematica
s = Nest[Flatten[# /. {0 -> {0, 1}, 1 -> {0}}] &, {0}, 13] (* A003849 *) w = StringJoin[Map[ToString, s]] w1 = StringReplace[w, {"00" -> "2"}] st = ToCharacterCode[w1] - 48 (* A284620 *) Flatten[Position[st, 0]] (* A284621 *) Flatten[Position[st, 1]] (* A005843 *) Flatten[Position[st, 2]] (* A130568 *)
-
Python
from math import isqrt def A284621(n): return (n-1+isqrt(5*(n-1)**2)&-2)+(n<<1)-1 # Chai Wah Wu, May 22 2025
Formula
a(n+1) = 2*A001950(n) + 1, n>0. - Michel Dekking, Mar 17 2020
Comments