cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A284621 Positions of 0 in A284620.

Original entry on oeis.org

1, 5, 11, 15, 21, 27, 31, 37, 41, 47, 53, 57, 63, 69, 73, 79, 83, 89, 95, 99, 105, 109, 115, 121, 125, 131, 137, 141, 147, 151, 157, 163, 167, 173, 179, 183, 189, 193, 199, 205, 209, 215, 219, 225, 231, 235, 241, 247, 251, 257, 261, 267, 273, 277, 283, 287
Offset: 1

Views

Author

Clark Kimberling, May 02 2017

Keywords

Comments

This sequence and A005843 and A130568 partition the positive integers into sequences with slopes t = 1+sqrt(5), u = 3+sqrt(5), v = 2, where 1/t + 1/u + 1/v = 1. The positions of 1 in A284620 are given by A005843, and of 2, by A130568.
From Michel Dekking, Mar 17 2020: (Start)
This sequence is a generalized Beatty sequence.
It was shown in the Comments of A284620 that A284620 is the letter-to-letter image of the fixed point x = ABCDABCDCD... of the morphism
mu: A->AB, B->CD, C->ABCD, D->CD,
with the letter-to-letter map lambda defined by
lambda: A->0, B->1, C->2, D->1.
Note that A284620(n)=0 iff x(n) = A, where x = ABCDABCDCD... is the fixed point of mu. The return words of A in x are ABCD and ABCDCD. Coding these two return words by their lengths, mu induces a morphism rho on the coded return words given by
rho(4) = 46, rho(4) = 466.
The difference sequence (a(n+1)-a(n)) equals the unique fixed point r = 4646646466... of rho.
The morphism g on the alphabet {a,b} given by
g(a) = ab, g(b) =abb
was introduced in A284620. We see that rho is just an alphabet change of the morphism g.
Let f given by f(b) = ba, f(a) = b be the Fibonacci morphism on the alphabet {b,a} with fixed point x_F = babbababba....
Let x_G = ababbababb... be the fixed point of g. It is well-known (see, e.g., Lemma 12 in "Morphic words..."), that x_G = a x_F.
In general the partial sums of x_F are equal to the generalized Beatty sequence V given by V(n) = p*floor(n*phi) +q*n+r, where p = a-b and q = 2*b-a. See Lemma 8 in the Allouche and Dekking paper. Here we obtain p = 2, q = 2. So a(n) = 2*floor((n-1)*phi) + 2*n - 1, for n>0.
(End)

Examples

			As a word, A284620 = 012101212101210121..., in which 0 is in positions 1,5,11,15,...
		

Crossrefs

Programs

  • Mathematica
    s = Nest[Flatten[# /. {0 -> {0, 1}, 1 -> {0}}] &, {0}, 13]  (* A003849 *)
    w = StringJoin[Map[ToString, s]]
    w1 = StringReplace[w, {"00" -> "2"}]
    st = ToCharacterCode[w1] - 48 (* A284620 *)
    Flatten[Position[st, 0]]  (* A284621 *)
    Flatten[Position[st, 1]]  (* A005843 *)
    Flatten[Position[st, 2]]  (* A130568 *)
  • Python
    from math import isqrt
    def A284621(n): return (n-1+isqrt(5*(n-1)**2)&-2)+(n<<1)-1 # Chai Wah Wu, May 22 2025

Formula

a(n+1) = 2*A001950(n) + 1, n>0. - Michel Dekking, Mar 17 2020