A284625 Positions of 2 in A284749.
3, 6, 7, 10, 13, 14, 17, 18, 21, 24, 25, 28, 31, 32, 35, 36, 39, 42, 43, 46, 47, 50, 53, 54, 57, 60, 61, 64, 65, 68, 71, 72, 75, 78, 79, 82, 83, 86, 89, 90, 93, 94, 97, 100, 101, 104, 107, 108, 111, 112, 115, 118, 119, 122, 123, 126, 129, 130, 133, 136, 137
Offset: 1
Examples
As a word, A284749 = 012012201201220122..., in which 2 is in positions 3,6,7,10,...
Links
- Clark Kimberling, Table of n, a(n) for n = 1..10000
- J.-P. Allouche and F. M. Dekking, Generalized Beatty sequences and complementary triples, arXiv:1809.03424v3 [math.NT], 2018-2019.
Programs
-
Mathematica
s = Nest[Flatten[# /. {0 -> {0, 1}, 1 -> {0}}] &, {0}, 13] (* A003849 *) w = StringJoin[Map[ToString, s]] w1 = StringReplace[w, {"001" -> "2"}] st = ToCharacterCode[w1] - 48 (* A284749 *) Flatten[Position[st, 0]] (* A214971 *) Flatten[Position[st, 1]] (* A284624 *) Flatten[Position[st, 2]] (* A284625 *)
-
Python
from math import isqrt def A284625(n): return (n+isqrt(5*n**2)&-2)-n+2 # Chai Wah Wu, May 22 2025
Formula
a(n) = 2*floor(n*phi) - n + 2 (Example 30 in Allouche and Dekking). - Michel Dekking, Oct 08 2018
a(n) = A050140(n)+2 - Michel Dekking, Oct 08 2018
Comments