This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A284636 #21 Sep 08 2022 08:46:19 %S A284636 6,9,66,69,96,99,666,669,696,699,966,969,996,999,6666,6669,6696,6699, %T A284636 6966,6969,6996,6999,9666,9669,9696,9699,9966,9969,9996,9999,66666, %U A284636 66669,66696,66699,66966,66969,66996,66999,69666,69669,69696,69699,69966,69969 %N A284636 Numbers with digits 6 and 9 only. %C A284636 All terms are composite. %C A284636 All terms are divisible by 3. - _Michael S. Branicky_, Jun 09 2021 %H A284636 Felix Fröhlich, <a href="/A284636/b284636.txt">Table of n, a(n) for n = 1..10000</a> %F A284636 a(n) = 3 * A032810(n). %t A284636 Table[FromDigits /@ Tuples[{6, 9}, n], {n, 5}] // Flatten (* or *) %t A284636 Select[Range@ 70000, Total@ Pick[DigitCount@ #, {0, 0, 0, 0, 0, 1, 0, 0, 1, 0}, 0] == 0 &] (* _Michael De Vlieger_, Apr 02 2017 *) %o A284636 (Magma) [n: n in [1..100000] | Set(IntegerToSequence(n, 10)) subset {6, 9}] %o A284636 (PARI) %o A284636 a(n) = { %o A284636 my(z, e = logint(n+1,2,&z), %o A284636 t1 = 9 * subst(Pol(binary(n+1-z),'x), 'x, 10), %o A284636 t2 = 6 * subst(Pol(binary(2*z-2-n),'x), 'x, 10)); %o A284636 t1+t2; %o A284636 }; %o A284636 vector(44, n, a(n)) \\ _Gheorghe Coserea_, Apr 04 2017 %o A284636 (Python) %o A284636 def a(n): return int(bin(n+1)[3:].replace('0', '6').replace('1', '9')) %o A284636 print([a(n) for n in range(1, 45)]) # _Michael S. Branicky_, Jun 09 2021 %Y A284636 Cf. A032810. %Y A284636 Numbers n with digits 6 and k only for k = 0 - 5 and 7 - 9: A204093 (k = 0), A284293 (k = 1), A284632 (k = 2), A284633 (k = 3), A284634 (k = 4), A256291 (k = 5), A256292 (k = 7), A284635 (k = 8), this sequence (k = 9). %K A284636 nonn,base %O A284636 1,1 %A A284636 _Jaroslav Krizek_, Apr 02 2017