cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A284639 Number of ways to write n > 1 as a power of a product n = (x_1*..*x_k)^y, where y >= 1, x_i > 1, and x_i <= x_j for i < j.

Original entry on oeis.org

1, 1, 3, 1, 2, 1, 4, 3, 2, 1, 4, 1, 2, 2, 8, 1, 4, 1, 4, 2, 2, 1, 7, 3, 2, 4, 4, 1, 5, 1, 8, 2, 2, 2, 11, 1, 2, 2, 7, 1, 5, 1, 4, 4, 2, 1, 12, 3, 4, 2, 4, 1, 7, 2, 7, 2, 2, 1, 11, 1, 2, 4, 17, 2, 5, 1, 4, 2, 5, 1, 16, 1, 2, 4, 4, 2, 5, 1, 12, 8, 2, 1, 11, 2
Offset: 2

Views

Author

Gus Wiseman, Mar 30 2017

Keywords

Comments

a(1)=infinity is not an integer so is necessarily omitted from the data.

Examples

			The a(64)=17 ways to write 64 as a power of a product:
(2*2*2*2*2*2)^1   (2*2*2)^2  (2*2)^3  (2)^6
(2*2*2*2*4)^1     (2*4)^2    (4)^3
(2*2*2*8)^1       (8)^2
(2*2*4*4)^1
(2*2*16)^1
(2*4*8)^1
(2*32)^1
(4*4*4)^1
(4*16)^1
(8*8)^1
(64)^1.
		

Crossrefs

Programs

  • Mathematica
    nn=85;
    postfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[postfacs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[DivisorSum[GCD@@FactorInteger[n][[All,2]],Length[postfacs[n^(1/#)]]&],{n,2,nn}]