This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A284644 #31 Sep 26 2018 22:18:27 %S A284644 2,2,1,3,5,3,5,6,4,6,10,5,7,9,9,10,11,11,12,10,14,11,9,16,14,11,17,21, %T A284644 11,16,19,17,19,20,19,21,21,22,22,22,24,21,23,23,22,25,25,18,35,26,24, %U A284644 32,25,22,35,34,20,38,36,27,34,40,20,39,33,36,39,28,40,37,39 %N A284644 a(1) = a(2) = 2, a(3) = 1; a(n) = a(n-a(n-1)) + a(n-a(n-2)) for n > 3. %C A284644 A "brother" to Hofstadter's Q-sequence (A005185) and A244477 using with different starting values. %H A284644 Altug Alkan, <a href="/A284644/b284644.txt">Table of n, a(n) for n = 1..10000</a> %H A284644 Altug Alkan, <a href="/A284644/a284644.png">Alternative scatterplot of A284644</a> %H A284644 Altug Alkan, <a href="https://doi.org//10.1155/2018/8517125">On a Generalization of Hofstadter's Q-Sequence: A Family of Chaotic Generational Structures</a>, Complexity (2018) Article ID 8517125. %H A284644 Altug Alkan, Nathan Fox, and Orhan Ozgur Aybar, <a href="https://doi.org/10.1155/2017/2614163">On Hofstadter Heart Sequences</a>, Complexity, 2017, 2614163. %e A284644 a(4) = 3 because a(4) = a(4 - a(3)) + a(4 - a(2)) = a(3) + a(2) = 3. %p A284644 A284644:= proc(n) option remember; procname(n-procname(n-1)) +procname(n-procname(n-2)) end proc: %p A284644 A284644(1):= 2: A284644(2):= 2: A284644(3):= 1: %p A284644 map(A284644, [$1..1000]); %t A284644 a[1] = a[2] = 2; a[3] = 1; a[n_] := a[n] = a[n - a[n - 1]] + a[n - a[n - 2]]; Table[a@ n, {n, 72}] (* _Michael De Vlieger_, Apr 02 2017 *) %o A284644 (PARI) a=vector(1000); a[1]=a[2]=2; a[3]=1; for(n=4, #a, a[n] = a[n-a[n-1]]+a[n-a[n-2]]); a %Y A284644 Cf. A005185, A244477. %K A284644 nonn,look %O A284644 1,1 %A A284644 _Altug Alkan_, Mar 31 2017