A284646 Variation on Leyland numbers: k = x'^y + y'^x, where x' and y' are the arithmetic derivative of x and y.
2, 17, 26, 37, 50, 65, 82, 101, 126, 145, 170, 197, 217, 226, 257, 325, 344, 362, 401, 442, 485, 512, 513, 577, 626, 677, 730, 785, 901, 962, 1001, 1025, 1090, 1157, 1297, 1445, 1522, 1601, 1682, 1729, 1765, 1850, 1937, 2026, 2117, 2198, 2305, 2402, 2501, 2602
Offset: 1
Keywords
Examples
2' = 1, 4' = 4, 1^4 + 4^2 = 1 + 16 = 17.
Programs
-
Maple
with(numtheory): N:= 10^5: A:={}: for x from 2 to floor(N^(1/2)) do for y from 2 do yd:=y*add(op(2,p)/op(1,p),p=ifactors(y)[2]); xd:=x*add(op(2,p)/op(1,p),p=ifactors(x)[2]); a:= xd^y + yd^x; if a>N then break fi; A:=A union {a}; od; od; sort([op(A)]); # based on Robert Israel code in A076980.
Comments