A284666 List of 3-term arithmetic progressions of coprime positive integers whose product is a square.
1, 1, 1, 1, 25, 49, 18, 25, 32, 1, 841, 1681, 49, 169, 289, 50, 169, 288, 49, 289, 529, 128, 289, 450, 98, 625, 1152, 289, 625, 961, 800, 841, 882, 162, 1681, 3200, 288, 1369, 2450, 529, 1369, 2209, 1, 28561, 57121, 49, 5329, 10609, 961, 1681, 2401, 289, 2809, 5329
Offset: 1
Examples
18*(18+7)*(18+2*7) = 18*25*32 = 9*25*64 = (3*5*8)^2 and gcd(18,25,32) = 1, so 18,25,32 is in the sequence.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..1248 (triples with product < 10^18)
- P. Erdős and J.L. Selfridge, The product of consecutive integers is never a power, Illinois J. Math., 19 (1975), 292-301.
- N. Saradha, On perfect powers in products with terms from arithmetic progressions, Acta Arith., 82 (1997), 147-172.
- N. Saradha, Squares in products with terms in an arithmetic progression, Acta Arith., 86 (1998), 27-43.
Programs
-
Maple
N:= 10^11: # to get all triples where the product <= N Res:= [1,0]: for a from 1 to floor(N^(1/3)) do for d from 1 while a*(a+d)*(a+2*d) <= N do if igcd(a,d) = 1 and issqr(a*(a+d)*(a+2*d)) then Res:= Res, [a,d] fi od od: Res:= sort([Res], (s,t) -> s[1]*(s[1]+s[2])*(s[1]+2*s[2]) <= t[1]*(t[1]+t[2])*(t[1]+2*t[2])): map(t -> (t[1],t[1]+t[2],t[1]+2*t[2]), Res); # Robert Israel, Apr 05 2017
-
Mathematica
nn = 50000; t = {}; p[a_, b_, c_] := a *b*c; Do[ If[p[a, a + d, a + 2 d] <= 2 nn^2 && GCD[a, d] == 1 && IntegerQ[Sqrt[p[a, a + d, a + 2 d]]], AppendTo[t, {a, a + d, a + 2 d}]], {a, 1, nn}, {d, 0, nn}]; Sort[t, p[#1[[1]], #1[[2]], #1[[3]]] < p[#2[[1]], #2[[2]], #2[[3]]] &] // Flatten
Comments