This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A284699 #19 Feb 16 2025 08:33:43 %S A284699 3,15,57,223,863,3333,12883,49791,192441,743775,2874655,11110405, %T A284699 42941187,165965647,641449337,2479171199,9581878847,37033506309, %U A284699 143132741651,553201243263,2138096511097,8263641389887,31938581194175,123441098248197,477093977471363,1843945546253839,7126761892007865 %N A284699 Number of dominating sets in the n-antiprism graph. %C A284699 Recurrence used to extrapolate sequence to a(1) and a(2). %H A284699 Colin Barker, <a href="/A284699/b284699.txt">Table of n, a(n) for n = 1..1000</a> %H A284699 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/AntiprismGraph.html">Antiprism Graph</a> %H A284699 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DominatingSet.html">Dominating Set</a> %H A284699 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (3,3,1,1,1). %F A284699 From _Colin Barker_, Apr 01 2017: (Start) %F A284699 G.f.: x*(3 + 6*x + 3*x^2 + 4*x^3 + 5*x^4) / (1 - 3*x - 3*x^2 - x^3 - x^4 - x^5). %F A284699 a(n) = 3*a(n-1) + 3*a(n-2) + a(n-3) + a(n-4) + a(n-5) for n>5. %F A284699 (End) %t A284699 LinearRecurrence[{3, 3, 1, 1, 1}, {3, 15, 57, 223, 863, 3333, 12883}, 20] %t A284699 Table[RootSum[-1 - # - #^2 - 3 #^3 - 3 #^4 + #^5 &, #^n &], {n, 20}] %o A284699 (PARI) Vec(x*(3 + 6*x + 3*x^2 + 4*x^3 + 5*x^4) / (1 - 3*x - 3*x^2 - x^3 - x^4 - x^5) + O(x^30)) \\ _Colin Barker_, Apr 01 2017 %K A284699 nonn,easy %O A284699 1,1 %A A284699 _Eric W. Weisstein_, Apr 01 2017