cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A284748 Decimal expansion of the sum of reciprocals of composite powers.

This page as a plain text file.
%I A284748 #33 Nov 22 2024 00:35:25
%S A284748 2,2,6,8,4,3,3,3,0,9,5,0,2,0,4,8,7,2,1,3,5,6,3,2,5,4,0,1,4,4,0,5,7,6,
%T A284748 0,4,3,8,1,2,5,8,6,6,3,9,1,6,8,1,3,9,5,1,6,8,8,9,9,3,9,3,2,6,4,3,2,9,
%U A284748 0,9,7,1,5,1,0,7,6,6,6,0,2,1,6,6,2,0,1,2,4,1,1,7,6,6,7,9,1,8,1,6,7,1,0,6,2,1
%N A284748 Decimal expansion of the sum of reciprocals of composite powers.
%F A284748 Equals Sum_{n>=1} 1/A002808(n)^(n+1) = (A275647 - 1) + (A278419 - 1) + ...
%F A284748 Equals Sum_{n>=1} 1/A002808(n)*(A002808(n)-1).
%F A284748 Equals Sum_{n>=2} (Zeta(n) - PrimeZeta(n) - 1) = Sum_{n>=2} CompositeZeta(n).
%F A284748 Equals 1 - A136141.
%e A284748 Equals 1/(4*3)+1/(6*5)+1/(8*7)+1/(9*8)+1/(10*9)+...
%e A284748 = 0.226843330950204872135632540144057604...
%t A284748 RealDigits[ NSum[Zeta[n]-1-PrimeZetaP[n], {n, 2, Infinity}], 10, 105] [[1]]
%o A284748 (PARI) 1 - sumeulerrat(1/(p*(p-1))) \\ _Amiram Eldar_, Mar 18 2021
%Y A284748 Cf. A066247, A077761, A179119, A185380.
%Y A284748 Decimal expansion of the sum of reciprocal powers: A136141 (primes), A154945 (primes at even powers), A152447 (semiprimes), A154932 (squarefree semiprimes).
%Y A284748 Decimal expansion of the 'nonprime zeta function': A275647 (at 2), A278419 (at 3).
%K A284748 nonn,cons
%O A284748 0,1
%A A284748 _Terry D. Grant_, Apr 01 2017
%E A284748 More digits from _Vaclav Kotesovec_, Jan 13 2021