A284754 a(n) is the smallest number k such that prime(k) divides primorial(j) + 1 for exactly n integers j.
1, 59, 436, 995752, 180707
Offset: 1
Examples
a(1) = 1 because the first prime, prime(1) = 2, divides primorial(j) + 1 for exactly one integer j, namely, j = 0 (since primorial(0) = 1). a(2) = 59 because prime(59) = 277 divides primorial(j) + 1 for exactly two integers j (i.e., 7 and 17), and 59 is the smallest integer for which this is the case. a(3) = 436 because prime(436) = 3041 divides primorial(j) + 1 for exactly three integers j (i.e., 206, 263, and 409), and 436 is the smallest integer for which this is the case. a(5) = 180707 because prime(180707) = 2464853 divides primorial(j) + 1 for exactly five integers j (i.e., 75366, 79914, 139731, 139990, and 175013), and 180707 is the smallest integer for which this is the case.
Extensions
a(4) from Giovanni Resta, Apr 02 2017
Comments