A284758 The least positive integer that has exactly n different representations as Brazilian number.
1, 7, 15, 24, 40, 60, 144, 120, 180, 336, 420, 360, 900, 960, 720, 840, 1260, 1440, 2340, 1680, 2880, 3600, 8190, 2520, 9072, 9900, 6300, 6720, 20592, 5040, 10920, 7560, 31320, 98040, 25920, 10080, 21420, 177156, 74256, 15120, 28560, 20160
Offset: 0
Examples
a(0) = 1 because 1 is the smallest non-Brazilian number. a(4) = 40 because 40 = 1111_3 = 55_7 = 44_9 = 22_19 and 40 is the smallest integer with four Brazilian representations.
References
- D. Lignon, Dictionnaire de (presque) tous les nombres entiers, Ellipses, 2012, page 420.
Links
- Giovanni Resta, Table of n, a(n) for n = 0..100
Programs
-
Mathematica
rep[n_] := Length@ Select[Range[2, n/2], 1 == Length@ Union@ IntegerDigits[n, #] &]; a[n_] := Block[{k=1}, While[rep[k] != n, k++]; k]; a /@ Range[0, 15] (* Giovanni Resta, Apr 04 2017 *)
Comments