cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A284760 a(n) = Sum_{i=1..n-1}(i^(n-2)) mod n^4.

This page as a plain text file.
%I A284760 #21 May 02 2017 11:46:02
%S A284760 0,1,3,14,100,979,196,500,3834,1333,2178,1022,16731,12647,42420,23912,
%T A284760 23409,26265,15162,79730,84441,21723,28566,160732,280625,329405,
%U A284760 137295,569702,74849,71999,463202,715984,247665,31873,1302420,574170,807710,225091,1377129
%N A284760 a(n) = Sum_{i=1..n-1}(i^(n-2)) mod n^4.
%C A284760 Mestrovic conjectures that a(n) > 0 for all n > 1 (Conjecture 2.11).
%H A284760 Seiichi Manyama, <a href="/A284760/b284760.txt">Table of n, a(n) for n = 1..1000</a>
%H A284760 R. Mestrovic, <a href="https://arxiv.org/abs/1211.4570">A congruence modulo n^3 involving two consecutive sums of powers and its applications</a>, arXiv:1211.4570 [math.NT], 2012.
%F A284760 a(n) = A076015(n-1) modulo n^4.
%e A284760 For n=5 the sum is 1^3 + 2^3 + 3^3 + 4^3 = 1 + 8 + 27 + 64 = 100; the modulus is 5^4 = 625. So a(5) = 100 mod 625 = 100. - _Peter Munn_, May 01 2017
%t A284760 Table[Mod[Sum[i^(n - 2), {i, n - 1}], n^4], {n, 39}] (* _Michael De Vlieger_, Apr 05 2017 *)
%o A284760 (PARI) a(n) = lift(Mod(sum(i=1, n-1, i^(n-2)), n^4))
%o A284760 (PARI) a(n)=my(m=n^4,e=n-2); lift(sum(i=1,n-1, Mod(i,m)^e)) \\ _Charles R Greathouse IV_, Apr 07 2017
%Y A284760 Cf. A076015, A284759.
%K A284760 nonn
%O A284760 1,3
%A A284760 _Felix Fröhlich_, Apr 02 2017