This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A284761 #8 Apr 05 2017 08:07:17 %S A284761 1,1,1,1,1,1,1,6,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,1,1,1,1,1,1,1,1,1, %T A284761 1,1,1,1,3,1,1,1,1,2,2,1,1,2,2,1,1,1,1,1,1,3,1,1,1,1,1,2,6,1,1,1,1,1, %U A284761 1,1,1,1,1,2,2,1,1,1,1,4,2,1,1,1,1,1,3 %N A284761 a(n) = gcd(A279513(n), A279513(n+1)). %C A284761 Two consecutive numbers, say n and n+1, cannot share a prime factor (gcd(n, n+1)=1). However, their prime tower factorizations can share some prime numbers; this is the case iff a(n)>1 (see A182318 for the definition of the prime tower factorization of a number). %C A284761 If p is prime, then a(p-1) = a(p) = 1. %C A284761 If p is an odd prime, then a(p^2) = 2. %C A284761 This sequence contains a multiple of p for any prime p: %C A284761 - let m = A074792(p)^p-1, %C A284761 - m is a multiple of p, hence p divides A279513(m), %C A284761 - m+1 = A074792(p)^p, hence p divides A279513(m+1), %C A284761 - hence p divides gcd(A279513(m), A279513(m+1)) = a(m). %C A284761 This sequence contains infinitely many distinct values; see A284821 for these distinct values in order of appearance, and A284822 for the corresponding indexes. %H A284761 Rémy Sigrist, <a href="/A284761/b284761.txt">Table of n, a(n) for n = 1..10000</a> %H A284761 Rémy Sigrist, <a href="/A284761/a284761.pdf">Illustration of the first terms</a> %e A284761 a(8) = gcd(A279513(8), A279513(9)) = gcd(A279513(2^3), A279513(3^2)) = gcd(2*3, 3*2) = 6. %Y A284761 Cf. A074792, A182318, A284821, A284822. %K A284761 nonn %O A284761 1,8 %A A284761 _Rémy Sigrist_, Apr 02 2017