A284783 Numbers k such that k and k + 5040 have the same number of divisors.
11, 19, 22, 37, 38, 39, 41, 46, 47, 51, 55, 57, 58, 59, 61, 62, 65, 67, 68, 73, 74, 76, 78, 79, 87, 88, 91, 92, 99, 102, 104, 107, 113, 114, 115, 116, 118, 123, 124, 125, 127, 129, 131, 132, 133, 136, 138, 139, 142, 143, 146, 148, 149, 153, 155, 156, 157, 159
Offset: 1
Keywords
References
- Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, p. 111.
- Paulo Ribenboim, The New Book of Prime Number Records, Springer 1996, p. 332.
- Joe Roberts, Lure of the Integers, The Mathematical Association of America, 1992, p. 69.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Claudia A. Spiro, The Frequency with Which an Integral-Valued, Prime-Independent, Multiplicative or Additive Function of n Divides a Polynomial Function of n, Ph. D. Thesis, University of Illinois, Urbana-Champaign, 1981.
Programs
-
Mathematica
Select[Range[160], DivisorSigma[0, #] == DivisorSigma[0, # + 5040] &]
-
PARI
for(n=1, 200, if(numdiv(n) == numdiv(n + 5040), print1(n,", "))) \\ Indranil Ghosh, Apr 04 2017
-
Python
from sympy.ntheory import divisor_count as D print([n for n in range(1, 201) if D(n) == D(n + 5040)]) # Indranil Ghosh, Apr 04 2017
Comments