This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A284794 #9 Jun 25 2017 10:47:17 %S A284794 2,6,8,10,14,18,20,24,26,30,32,34,38,42,44,46,50,54,56,60,62,64,68,72, %T A284794 74,78,80,82,86,90,92,96,98,102,104,106,110,114,116,118,122,126,128, %U A284794 132,134,138,140,142,146,150,152,154,158,162,164,168,170,172,176 %N A284794 Positions of -1 in A284793. %C A284794 This sequence and A284795 and A284796 form a partition of the positive integers. For n>=1, we have 3n-a(n) in {0,1,2}, 3*n+2-A284795(n) in {0,1,2,3}, and 3*n-2-A284796(n) in {0,1}. %C A284794 A284793 = (1,-1,0,1,0,-1,1,-1,1,-1,0,1,0,-1,0,1,0,-1,1,-1,0,1,0,-1, ... ); thus %C A284794 A284794 = (2,6,8,10,14,...) %C A284794 A284795 = (3,5,11,13,15,...) %C A284794 A284796 = (1,4,7,9,12,15,...). %H A284794 Clark Kimberling, <a href="/A284794/b284794.txt">Table of n, a(n) for n = 1..10000</a> %t A284794 s = Nest[Flatten[# /. {0 -> {0, 1}, 1 -> {0, 0, 1, 1}}] &, {0}, 7] (* A284775 *) %t A284794 d = Differences[s] (* A284793 *) %t A284794 e = Flatten[Position[d, -1]] (* A284794 *) %t A284794 Flatten[Position[d, 0]] (* A284795 *) %t A284794 Flatten[Position[d, 1]] (* A284796 *) %t A284794 e/2 (* positions of 0 in A189664 *) %Y A284794 Cf. A284793, A284795, A284796, A189664, A284882. %K A284794 nonn,easy %O A284794 1,1 %A A284794 _Clark Kimberling_, Apr 14 2017