This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A284795 #13 Nov 23 2019 13:38:02 %S A284795 3,5,11,13,15,17,21,23,27,29,35,37,39,41,47,49,51,53,57,59,65,67,69, %T A284795 71,75,77,83,85,87,89,93,95,99,101,107,109,111,113,119,121,123,125, %U A284795 129,131,135,137,143,145,147,149,155,157,159,161,165,167,173,175,177 %N A284795 Positions of 0's in A284793. %C A284795 This sequence and A284795 and A284796 form a partition of the positive integers. Conjecture: for n>=1, we have a(n)-3n+3 in {0,1}, 3*n+2-A284795(n) in {0,1,2,3}, and 3*n-2-A284795(n) in {0,1}. %C A284795 A284793 = (1,-1,0,1,0,-1,1,-1,1,-1,0,1,0,-1,0,1,0,-1,1,-1,0,1,0,-1, ... ); thus %C A284795 A284794 = (2,6,8,10,14,...) %C A284795 A284795 = (3,5,11,13,15,...) %C A284795 A284796 = (1,4,7,9,12,15,...). %H A284795 Clark Kimberling, <a href="/A284795/b284795.txt">Table of n, a(n) for n = 1..10000</a> %t A284795 s = Nest[Flatten[# /. {0 -> {0, 1}, 1 -> {0, 0, 1, 1}}] &, {0}, 7] (* A284775 *) %t A284795 d = Differences[s] (* A284793 *) %t A284795 Flatten[Position[d, -1]] (* A284794 *) %t A284795 Flatten[Position[d, 0]] (* A284795 *) %t A284795 Flatten[Position[d, 1]] (* A284796 *) %t A284795 d1/2 (* positions of 0 in A189664 *) %Y A284795 Cf. A284793, A284794, A284796, A189664. %K A284795 nonn,easy %O A284795 1,1 %A A284795 _Clark Kimberling_, Apr 14 2017