This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A284815 #18 Nov 12 2022 03:10:53 %S A284815 1,10,0,1101,11311,340210,4620020,12040210,151651121,1135531101,0, %T A284815 894105331101,0,15379177511311,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, %U A284815 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 %N A284815 Least number k such that k mod (2, 3, 4, ... , n+1) = (d_n, d_n-1, ..., d_1), where d_1 , d_2, ..., d_n are the digits of k, with MSD(k) = d_1 and LSD(k) = d_n. 0 if such a number does not exist. %F A284815 Conjecture: a(n) = 0 for all n >= 15. - _Max Alekseyev_, Nov 10 2022 %e A284815 a(7) = 4620020 because: %e A284815 4620020 mod 2 = 0, 4620020 mod 3 = 2, 4620020 mod 4 = 0, %e A284815 4620020 mod 5 = 0, 4620020 mod 6 = 2, 4620020 mod 7 = 6, %e A284815 4620020 mod 8 = 4. %p A284815 P:=proc(q) local a,d,j,k,n,ok; for k from 1 to q do d:=0; for n from 10^(k-1) to 10^k-1 do %p A284815 ok:=1; a:=n; for j from 1 to ilog10(n)+1 do if (a mod 10)<>n mod (j+1) %p A284815 then ok:=0; break; else a:=trunc(a/10); fi; od; if ok=1 then print(n); d:=1; break; fi; od; %p A284815 if n=10^k and d=0 then print(0); fi; od; end: P(20); %K A284815 nonn,base,hard %O A284815 1,2 %A A284815 _Paolo P. Lava_, Apr 10 2017 %E A284815 a(11)-a(15) from _Giovanni Resta_, Apr 10 2017 %E A284815 a(16)-a(50) from _Max Alekseyev_, Nov 10 2022