This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A284826 #28 Jun 12 2017 08:08:48 %S A284826 1,0,0,1,0,1,0,3,1,0,2,1,0,7,6,1,0,6,6,1,0,14,25,10,1,0,12,24,10,1,0, %T A284826 31,90,65,15,1,0,27,89,65,15,1,0,63,301,350,140,21,1,0,56,295,349,140, %U A284826 21,1,0,123,965,1701,1050,266,28,1 %N A284826 Irregular triangle T(n,k) for 1 <= k <= (n+1)/2: T(n,k) = number of primitive (aperiodic) palindromic structures of length n using exactly k different symbols. %C A284826 Permuting the symbols will not change the structure. %D A284826 M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2] %H A284826 Andrew Howroyd, <a href="/A284826/b284826.txt">Table of n, a(n) for n = 1..930</a> %F A284826 T(n, k) = (Sum_{j=0..k} (-1)^j * binomial(k, j) * A284823(n, k-j)) / k!. %F A284826 T(n, k) = Sum_{d | n} mu(n/d) * stirling2(ceiling(d/2), k). %e A284826 Triangle starts: %e A284826 1 %e A284826 0 %e A284826 0 1 %e A284826 0 1 %e A284826 0 3 1 %e A284826 0 2 1 %e A284826 0 7 6 1 %e A284826 0 6 6 1 %e A284826 0 14 25 10 1 %e A284826 0 12 24 10 1 %e A284826 0 31 90 65 15 1 %e A284826 0 27 89 65 15 1 %e A284826 0 63 301 350 140 21 1 %e A284826 0 56 295 349 140 21 1 %e A284826 0 123 965 1701 1050 266 28 1 %e A284826 0 120 960 1700 1050 266 28 1 %e A284826 0 255 3025 7770 6951 2646 462 36 1 %e A284826 0 238 2999 7760 6950 2646 462 36 1 %e A284826 0 511 9330 34105 42525 22827 5880 750 45 1 %e A284826 0 495 9305 34095 42524 22827 5880 750 45 1 %e A284826 -------------------------------------------- %e A284826 For n=5, structures with 2 symbols are aabaa, ababa and abbba, so T(5,2) = 3. %e A284826 For n=6, structures with 2 symbols are aabbaa and abbbba, so T(6,2) = 2. %e A284826 (In this case, the structure abaaba is excluded because it is not primitive.) %t A284826 T[n_, k_] := DivisorSum[n, MoebiusMu[n/#]*StirlingS2[Ceiling[#/2], k]&]; %t A284826 Table[T[n, k], {n, 1, 15}, {k, 1, Floor[(n+1)/2]}] // Flatten (* _Jean-François Alcover_, Jun 12 2017, from 2nd formula *) %o A284826 (PARI) %o A284826 b(n,k) = sumdiv(n,d, moebius(n/d) * k^(ceil(d/2))); %o A284826 a(n,k) = sum(j=0,k, b(n,k-j)*binomial(k,j)*(-1)^j)/k!; %o A284826 for(n=1, 20, for(k=1, ceil(n/2), print1( a(n,k),", ");); print();); %Y A284826 Columns 2-6 are A056481, A056482, A056483, A056484, A056485. %Y A284826 Partial row sums include A056476, A056477, A056478, A056479, A056480. %Y A284826 Row sums are A284841. %Y A284826 Cf. A284823. %K A284826 nonn,tabf %O A284826 1,8 %A A284826 _Andrew Howroyd_, Apr 03 2017