This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A284827 #5 Apr 03 2017 20:33:14 %S A284827 0,1,1,2,2,5,4,6,9,11,13,18,20,26,34,37,47,55,66,80,96,111,130,150, %T A284827 180,206,240,278,318,366,419,483,549,626,716,803,913,1034,1167,1314, %U A284827 1477,1659,1861,2085,2332,2605,2902,3232,3602,3999,4442,4930,5454,6034,6675,7375,8133,8967,9870,10855 %N A284827 Expansion of Sum_{i>=1} x^prime(i)/(1 - x^prime(i)) * Product_{j>=i} 1/(1 - x^prime(j)). %C A284827 Total number of smallest parts in all partitions of n into prime parts. %H A284827 <a href="/index/Par#partN">Index entries for related partition-counting sequences</a> %F A284827 G.f.: Sum_{i>=1} x^prime(i)/(1 - x^prime(i)) * Product_{j>=i} 1/(1 - x^prime(j)). %e A284827 a(10) = 11 because we have [7, 3], [5, 5], [5, 3, 2], [3, 3, 2, 2], [2, 2, 2, 2, 2] and 1 + 2 + 1 + 2 + 5 = 11. %t A284827 nmax = 60; Rest[CoefficientList[Series[Sum[x^Prime[i]/(1 - x^Prime[i]) Product[1/(1 - x^Prime[j]), {j, i, nmax}], {i, 1, nmax}], {x, 0, nmax}], x]] %Y A284827 Cf. A000607, A084993, A092268, A092269, A195820, A284828. %K A284827 nonn %O A284827 1,4 %A A284827 _Ilya Gutkovskiy_, Apr 03 2017