This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A284828 #7 Apr 06 2017 21:01:35 %S A284828 0,0,1,0,1,2,1,1,3,3,3,5,4,6,9,7,10,11,12,17,19,22,23,26,33,36,41,48, %T A284828 52,59,66,78,85,97,112,117,134,151,169,187,207,230,255,284,313,348, %U A284828 379,418,465,508,561,620,674,737,812,892,972,1064,1157,1257,1379,1503,1639,1776,1935,2101,2279,2483 %N A284828 Expansion of Sum_{i>=2} x^prime(i)/(1 - x^prime(i)) * Product_{j>=i} 1/(1 - x^prime(j)). %C A284828 Total number of smallest parts in all partitions of n into odd prime parts (A065091). %H A284828 <a href="/index/Par#partN">Index entries for related partition-counting sequences</a> %F A284828 G.f.: Sum_{i>=2} x^prime(i)/(1 - x^prime(i)) * Product_{j>=i} 1/(1 - x^prime(j)). %e A284828 a(16) = 7 because we have [13, 3], [11, 5], [7, 3, 3, 3], [5, 5, 3, 3] and 1 + 1 + 3 + 2 = 7. %t A284828 nmax = 68; Rest[CoefficientList[Series[Sum[x^Prime[i]/(1 - x^Prime[i]) Product[1/(1 - x^Prime[j]), {j, i, nmax}], {i, 2, nmax}], {x, 0, nmax}], x]] %o A284828 (PARI) x = 'x + O('x ^ 70); concat([0, 0], Vec(sum(i=2, 70, x^prime(i)/(1 - x^prime(i)) * prod(j=i, 70, 1/(1 - x^prime(j)))))) \\ _Indranil Ghosh_, Apr 05 2017 %Y A284828 Cf. A065091, A084993, A092268, A092269, A099773, A195820, A281544, A284827. %K A284828 nonn %O A284828 1,6 %A A284828 _Ilya Gutkovskiy_, Apr 03 2017