cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A284831 Expansion of Sum_{i>=1} x^(i^3)/(1 - x^(i^3)) * Product_{j>=i} 1/(1 - x^(j^3)).

This page as a plain text file.
%I A284831 #4 Apr 03 2017 20:36:12
%S A284831 1,2,3,4,5,6,7,9,10,12,14,16,18,20,22,26,27,30,33,36,39,42,45,51,52,
%T A284831 56,61,65,70,75,80,89,91,97,104,110,117,124,131,143,146,154,164,171,
%U A284831 180,189,198,213,217,227,240,248,259,272,282,301,307,320,337,347,361,376,390,414,422,439,461,474,492,512
%N A284831 Expansion of Sum_{i>=1} x^(i^3)/(1 - x^(i^3)) * Product_{j>=i} 1/(1 - x^(j^3)).
%C A284831 Total number of smallest parts in all partitions of n into cubes (A000578).
%H A284831 <a href="/index/Par#partN">Index entries for related partition-counting sequences</a>
%F A284831 G.f.: Sum_{i>=1} x^(i^3)/(1 - x^(i^3)) * Product_{j>=i} 1/(1 - x^(j^3)).
%e A284831 a(10) = 12 because we have [8, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] and 2 + 10 = 12.
%t A284831 nmax = 70; Rest[CoefficientList[Series[Sum[x^i^3/(1 - x^i^3) Product[1/(1 - x^j^3), {j, i, nmax}], {i, 1, nmax}], {x, 0, nmax}], x]]
%Y A284831 Cf. A000578, A003108, A092268, A092269, A195820, A281613.
%K A284831 nonn
%O A284831 1,2
%A A284831 _Ilya Gutkovskiy_, Apr 03 2017