cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A284849 Number of zeros strictly inside the unit circle of the Bernoulli polynomial B(n,x).

This page as a plain text file.
%I A284849 #25 Feb 16 2025 08:33:43
%S A284849 0,1,2,2,3,3,4,4,5,5,6,6,7,5,6,6,5,5,4,4,4,3,4,4,4,3,4,4,4,3,4,4,4,3,
%T A284849 4,3,4,3,4,3,4,3,4,3,4,3,4,3,4,3,4,3,4,3,4,3,4,3,4,3,4,3,4,3,4,3,4,3,
%U A284849 4,3,4,3,4,3,4,3,4,3,4,3,4,3,4,3,4,3,4,3
%N A284849 Number of zeros strictly inside the unit circle of the Bernoulli polynomial B(n,x).
%C A284849 The n-th Bernoulli polynomial is defined by the exponential generating function:
%C A284849 t*exp(x*t)/(exp(t)-1) = Sum_{n>=0} bernoulli(n,x)/n!*t^n.
%C A284849 The first few Bernoulli polynomials are:
%C A284849 B(0,x) = 1
%C A284849 B(1,x) = x - 1/2
%C A284849 B(2,x) = x^2 - x + 1/6
%C A284849 B(3,x) = x^3 - 3/2 x^2 + 1/2 x
%C A284849 B(4,x)= x^4 - 2x^3 + x^2 - 1/30
%C A284849 Conjecture: for n > 63, a(n) = 3 for n odd and a(n) = 4 otherwise. - _Charles R Greathouse IV_, May 09 2017
%H A284849 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BernoulliPolynomial.html">Bernoulli Polynomial</a>
%F A284849 Conjectures from _Colin Barker_, Jan 22 2020: (Start)
%F A284849 G.f.: x*(1 + 2*x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11 - x^12 - x^13 + x^14 - x^15 - x^16 - x^17 - x^18 - x^20 + x^22 - x^24 + x^26 - x^28 + x^30 - x^32) / ((1 - x)*(1 + x)).
%F A284849 a(n) = a(n-2) for n>33.
%F A284849 (End)
%e A284849 a(6) = 4 because the zeros of B(6,x) = x^6 - 3x^5 + 5/2 x^4 - 1/2 x^2 + 1/42 are:
%e A284849 x1 = -0.2728865...-0.06497293...*i,
%e A284849 x2 = -0.2728865...+0.06497293...*i,
%e A284849 x3 =  0.2475407...,
%e A284849 x4 =  0.7524592...,
%e A284849 x5 =  1.272886...-.06497293...*i,
%e A284849 x6 =  1.272886...+.06497293...*i
%e A284849 with four roots x1, x2, x3 and x4 in the unit circle.
%p A284849 for n from 0 to 90 do:it:=0:
%p A284849 y:=[fsolve(expand(bernoulli(n,x)),x,complex)]:for m from 1 to nops(y) do:if abs(y[m])<1 then it:=it+1:else fi:od: printf(`%d, `, it):od:
%o A284849 (PARI) a(n)=my(v=polroots(bernpol(n))); sum(i=1,#v,abs(v[i])<1) \\ _Charles R Greathouse IV_, May 09 2017
%Y A284849 Cf. A001898, A027641, A027642.
%K A284849 nonn
%O A284849 0,3
%A A284849 _Michel Lagneau_, May 09 2017