A284857 Numerators of the exponential expansion of (3/(log(1+x)))*(1 - 1/(1+x)^(1/3)).
1, -1, 11, -49, 1187, -18083, 662407, -3539605, 864309187, -949103125, 289289620393, -4846044126449, 12389144856368069, -69977996793541583, 1191089380720588487, -6783915816877925461, 3295296805315071712171, -169986671194174827887881, 129921413307474873885175559, -149671376459098924087260625
Offset: 0
Examples
The rationals a(n)/A284858(n) start: 1, -1/6, 11/54, -49/108, 1187/810, -18083/2916, 662407/20412, -3539605/17496, 864309187/590490, -949103125/78732, 289289620393/2598156, -4846044126449/4251528, 12389144856368069/967222620, -69977996793541583/446410440, 1191089380720588487/573956280, -6783915816877925461/229582512, ... From the z-recurrence for A282629(5, 0) = 1 one finds: 1 = 5*(1*1 + 255*(-1/6) + 945*(11/54) + 594*(-49/108) + 81*(1187/810)).
Formula
E.g.f.: (3/(log(1+x)))*(1 - 1/(1+x)^(1/3)) for the rational sequence a(n)/A284858(n), n >= 0.
Comments