A284862 Numerators of exponential expansion of (3/(2*log(1+x)))*(1 - 1/(1+x)^(2/3)).
1, -1, 13, -32, 1666, -13426, 515194, -1432000, 1447711256, -4097653768, 256749458824, -2204786032640, 11533922227138736, -33268276510233104, 577462439822785168, -1674851096410984448, 6621155504764033947008, -34711497070334170000000
Offset: 0
Examples
The rationals r(n) begin: 1, -1/3, 13/27, -32/27, 1666/405, -13426/729, 515194/5103, -1432000/2187, 1447711256/295245, -4097653768/98415, 256749458824/649539, ... The z-sequence is {2*r(n)}, n >= 0. The nontrivial recurrence for A225466(4, 0) = 16 from this z-sequence is: 16 = 8*(1*8 + (-1/3)*117 + (13/27)*135 + (-32/27)*27).
Formula
a(n) = numerator(r(n)), with the rationals (in lowest terms) r(n) = [x^n/n!] (3/(2*log(1+x)))*(1 - 1/(1+x)^(2/3)).
Comments