This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A284871 #19 Jun 11 2017 20:55:00 %S A284871 1,2,0,3,1,0,4,3,4,0,5,6,15,7,0,6,10,36,39,18,0,7,15,70,126,132,29,0, %T A284871 8,21,120,310,540,357,70,0,9,28,189,645,1620,2034,1131,126,0,10,36, %U A284871 280,1197,3990,7790,8316,3276,266,0 %N A284871 Array read by antidiagonals: T(n,k) = number of primitive (aperiodic) reversible strings of length n using a maximum of k different symbols. %C A284871 A string and its reverse are considered to be equivalent. %D A284871 M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2] %H A284871 Andrew Howroyd, <a href="/A284871/b284871.txt">Table of n, a(n) for n = 1..1275</a> %F A284871 T(n, k) = Sum_{d | n} mu(n/d) * (k^n + k^(ceiling(n/2))) / 2. %e A284871 Table starts: %e A284871 1 2 3 4 5 6 7 8 ... %e A284871 0 1 3 6 10 15 21 28 ... %e A284871 0 4 15 36 70 120 189 280 ... %e A284871 0 7 39 126 310 645 1197 2044 ... %e A284871 0 18 132 540 1620 3990 8568 16632 ... %e A284871 0 29 357 2034 7790 23295 58779 131012 ... %e A284871 0 70 1131 8316 39370 140610 412965 1050616 ... %e A284871 0 126 3276 32760 195300 839790 2882376 8388576 ... %e A284871 ... %t A284871 b[n_, k_] := (k^n + k^Ceiling[n/2])/2; %t A284871 a[n_, k_] := DivisorSum[n, MoebiusMu[n/#] b[#, k]&]; %t A284871 Table[a[n-k+1, k], {n, 1, 10}, {k, n, 1, -1}] // Flatten (* _Jean-François Alcover_, Jun 05 2017, translated from PARI *) %o A284871 (PARI) %o A284871 b(n,k) = (k^n + k^(ceil(n/2))) / 2; %o A284871 a(n,k) = sumdiv(n,d, moebius(n/d) * b(d,k)); %o A284871 for(n=1, 10, for(k=1, 10, print1( a(n,k),", ");); print();); %Y A284871 Columns 2-6 are A045625, A056314, A056315, A056316, A056317. %Y A284871 Cf. A277504, A143324. %K A284871 nonn,tabl %O A284871 1,2 %A A284871 _Andrew Howroyd_, Apr 04 2017