cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A284876 Positive integers that are square roots of products a*(a+d)*(a+2*d) with coprime a > 0, d >= 0.

Original entry on oeis.org

1, 35, 120, 1189, 1547, 1560, 2737, 4080, 8400, 13175, 24360, 29520, 31080, 39997, 40391, 52633, 62279, 65773, 80520, 93023, 131040, 133055, 133560, 185640, 212219, 240240, 241345, 379680, 385440, 393805, 399960, 434231, 449497, 471240, 510229, 555360, 585395
Offset: 1

Views

Author

Jonathan Sondow, Apr 05 2017

Keywords

Comments

The main entry for this sequence is A284666, formed by the triples a, a+d, a+2*d. The pairs a, d form A284874.
sqrt((1+d)*(1+2*d)) is a member if and only if d is in A078522. The values of sqrt((1+d)*(1+2*d)) form the subsequence A046176.

Examples

			gcd(1,24)=1 and 1*(1+24)*(1+2*24) = 25*49 = (5*7)^2, so 5*7 = 35 is a member.
gcd(18,7)=1 and 18*(18+7)*(18+2*7) = 18*25*32 = 9*25*64 = (3*5*8)^2, so 3*5*8 = 120 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    nn = 50000; t = {};
    p[a_, b_, c_] := a b c; Do[
    If[p[a, a + d, a + 2 d] <= 2 nn^2 && GCD[a, d] == 1 &&
       IntegerQ[Sqrt[p[a, a + d, a + 2 d]]],
      AppendTo[t, Sqrt[p[a, a + d, a + 2 d]]]], {a, 1, nn}, {d, 0, nn}]; Sort[t]
  • PARI
    is(n,s)={!fordiv(n*=n,a,a^3>n && return;issquare(n\a*8+a^2,&s) && (s-=3*a)%4==0 && gcd(s\4,a)==1 && break)} \\ M. F. Hasler, Apr 06 2017

Formula

a(k+1)^2 = A284666(3*k+1)*A284666(3*k+2)*A284666(3*k+3) = A284874(2*k+1)*(A284874(2*k+1) + A284874(2*k+2))*(A284874(2*k+1) + 2*A284874(2*k+2)) for k >= 0.

Extensions

a(19)-a(37) from Giovanni Resta, Apr 06 2017