This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A284884 #12 Nov 23 2019 13:38:48 %S A284884 1,3,7,9,13,17,19,21,25,27,31,35,37,39,43,47,49,51,55,57,61,63,67,71, %T A284884 73,75,79,81,85,89,91,93,97,101,103,105,109,111,115,117,121,125,127, %U A284884 129,133,137,139,141,145,147,151,153,157,161,163,165,169,171,175 %N A284884 Positions of 1's in A284881. %C A284884 This sequence and A284882 and A284883 form a partition of the positive integers. Conjecture: for n>=1, we have a(n)-3n-3 in {0,1,2}, 3*n+1-A284883(n) in {0,1,2,3}, and 3*n-1-A284884(n) in {0,1,2}. %C A284884 A284881 = (1,-1,1,0,-1,0,1,-1,1,0,-1,0,1,0,...); thus %C A284884 A284882 = (2,5,8,11,15,18,...) %C A284884 A284883 = (4,6,10,12,14,16,...) %C A284884 A284884 = (1,3,7,9,13,17,...). %H A284884 Clark Kimberling, <a href="/A284884/b284884.txt">Table of n, a(n) for n = 1..10000</a> %t A284884 s = Nest[Flatten[# /. {0 -> {0, 1}, 1 -> {0, 1, 1, 0}}] &, {0}, 6] (* A284878 *) %t A284884 d = Differences[s] (* A284881 *) %t A284884 Flatten[Position[d, -1]] (* A284882 *) %t A284884 d2 = Flatten[Position[d, 0]] (* A284883 *) %t A284884 Flatten[Position[d, 1]] (* A284884 *) %t A284884 d2/2 (* A284885 *) %Y A284884 Cf. A284793, A284881, A284882, A284883. %K A284884 nonn,easy %O A284884 1,2 %A A284884 _Clark Kimberling_, Apr 16 2017