This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A284896 #22 May 30 2018 17:14:59 %S A284896 1,-1,-3,-6,0,11,42,63,73,-45,-267,-720,-1095,-1239,-66,2794,8757, %T A284896 16017,22885,19634,-2359,-61979,-161867,-302190,-421971,-432051, %U A284896 -126712,690578,2278273,4584989,7269985,8965464,7515373,-845659,-19930400,-53474765,-100195759 %N A284896 Expansion of Product_{k>=1} 1/(1+x^k)^(k^2) in powers of x. %C A284896 This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = n^2, g(n) = -1. - _Seiichi Manyama_, Nov 15 2017 %H A284896 Seiichi Manyama, <a href="/A284896/b284896.txt">Table of n, a(n) for n = 0..10000</a> %F A284896 a(0) = 1, a(n) = -(1/n)*Sum_{k=1..n} A078307(k)*a(n-k) for n > 0. - _Seiichi Manyama_, Apr 06 2017 %F A284896 G.f.: exp(Sum_{k>=1} (-1)^k*x^k*(1 + x^k)/(k*(1 - x^k)^3)). - _Ilya Gutkovskiy_, May 30 2018 %t A284896 CoefficientList[Series[Product[1/(1 + x^k)^(k^2) , {k, 40}], {x, 0, 40}], x] (* _Indranil Ghosh_, Apr 05 2017 *) %o A284896 (PARI) x= 'x + O('x^40); Vec(prod(k=1, 40, 1/(1 + x^k)^(k^2))) \\ _Indranil Ghosh_, Apr 05 2017 %Y A284896 Cf. A027998, A281590, A281591. %Y A284896 Product_{k>=1} 1/(1+x^k)^(k^m): A081362 (m=0), A255528 (m=1), this sequence (m=2), A284897 (m=3), A284898 (m=4), A284899 (m=5). %K A284896 sign %O A284896 0,3 %A A284896 _Seiichi Manyama_, Apr 05 2017