This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A284897 #13 Apr 07 2017 10:40:12 %S A284897 1,-1,-7,-20,-8,99,455,958,715,-3606,-17450,-44157,-61852,19546, %T A284897 419786,1442212,3084950,3756436,-2155907,-27112107,-88277693, %U A284897 -187777531,-251308697,-5153980,1182558343,4299818445,9988792754,16075200671,12020651310,-29802956283 %N A284897 Expansion of Product_{k>=1} 1/(1+x^k)^(k^3) in powers of x. %H A284897 Seiichi Manyama, <a href="/A284897/b284897.txt">Table of n, a(n) for n = 0..7180</a> %F A284897 a(0) = 1, a(n) = -(1/n)*Sum_{k=1..n} A284900(k)*a(n-k) for n > 0. - _Seiichi Manyama_, Apr 06 2017 %t A284897 CoefficientList[Series[Product[1/(1 + x^k)^(k^3) , {k, 40}], {x, 0, 40}], x] (* _Indranil Ghosh_, Apr 05 2017 *) %o A284897 (PARI) x= 'x + O('x^40); Vec(prod(k=1, 40, 1/(1 + x^k)^(k^3))) \\ _Indranil Ghosh_, Apr 05 2017 %Y A284897 Cf. A248882. %Y A284897 Product_{k>=1} 1/(1+x^k)^(k^m): A081362 (m=0), A255528 (m=1), A284896 (m=2), this sequence (m=3), A284898 (m=4), A284899 (m=5). %K A284897 sign %O A284897 0,3 %A A284897 _Seiichi Manyama_, Apr 05 2017