cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A284898 Expansion of Product_{k>=1} 1/(1+x^k)^(k^4) in powers of x.

This page as a plain text file.
%I A284898 #13 Apr 07 2017 10:40:19
%S A284898 1,-1,-15,-66,-54,725,4580,12739,3346,-149076,-791226,-2182124,
%T A284898 -1656973,16553206,100646954,318795473,506196578,-818806580,
%U A284898 -9148048880,-36415709566,-87180585636,-70923559814,484810027389,2992082912770,9866919438716,19936695359140
%N A284898 Expansion of Product_{k>=1} 1/(1+x^k)^(k^4) in powers of x.
%H A284898 Seiichi Manyama, <a href="/A284898/b284898.txt">Table of n, a(n) for n = 0..3995</a>
%F A284898 a(0) = 1, a(n) = -(1/n)*Sum_{k=1..n} A284926(k)*a(n-k) for n > 0. - _Seiichi Manyama_, Apr 06 2017
%t A284898 CoefficientList[Series[Product[1/(1 + x^k)^(k^4) , {k, 40}], {x, 0, 40}], x] (* _Indranil Ghosh_, Apr 05 2017 *)
%o A284898 (PARI) x= 'x + O('x^40); Vec(prod(k=1, 40, 1/(1 + x^k)^(k^4))) \\ _Indranil Ghosh_, Apr 05 2017
%Y A284898 Cf. A248883.
%Y A284898 Product_{k>=1} 1/(1+x^k)^(k^m): A081362 (m=0), A255528 (m=1), A284896 (m=2), A284897 (m=3), this sequence (m=4), A284899 (m=5).
%K A284898 sign
%O A284898 0,3
%A A284898 _Seiichi Manyama_, Apr 05 2017