A284904 The number of integers k less than 2^n whose decimal representation of their reciprocals has an odd period.
0, 0, 1, 2, 5, 10, 20, 40, 80, 150, 280, 522, 965, 1802, 3393, 6426, 12197, 23236, 44419, 85116, 163543, 314837, 607440, 1174134, 2273619, 4409116, 8561931, 16646790, 32404446, 63145533, 123173667
Offset: 0
Keywords
Examples
a(5)=10 because the reciprocals of {3, 6, 9, 12, 15, 18, 24, 27, 30, 31} all have an odd period, i.e., {1, 1, 1, 1, 1, 1, 1, 3, 1, 15}, respectively.
Crossrefs
Cf. A284601.
Programs
-
Mathematica
f[n_] := Mod[ Length[ RealDigits[1/n][[1, -1]]], 2]; s = 0; k = 1; lst = {}; Do[ While[k < 2^n, s += f@k; k++]; AppendTo[lst, s], {n, 0, 18}] (* or *) g[n_] := Mod[ MultiplicativeOrder[10, FixedPoint[ Quotient[#, GCD[#, 10]] &, n]], 2]; h[n_] := Length@ Most@ Flatten@ Table[2^i*5^j, {i, 0, n}, {j, 0, Log[5, 2^(n -i)]}]; s = 0; k = 1; lst = {}; Do[ While[k < 2^n, s += g@k; k++]; AppendTo[lst, s - h[n]], {n, 0, 30}]
Formula
log(a(n)) is approximately 0.33 + 0.727*n - 0.643*sqrt(n).
Comments