This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A284982 #11 Feb 16 2025 08:33:43 %S A284982 0,-1,0,-4,1,0,-9,6,-1,0,-16,20,-8,1,0,-25,50,-35,10,-1,0,-36,105, %T A284982 -112,54,-12,1,0,-49,196,-294,210,-77,14,-1,0,-64,336,-672,660,-352, %U A284982 104,-16,1,0,-81,540,-1386,1782,-1287,546,-135,18,-1,0,-100,825,-2640,4290,-4004,2275,-800,170,-20,1 %N A284982 Triangle read by rows: coefficients of the Laplacian polynomial of the n-cycle graph C_n. %C A284982 Extended to n = 1 and n = 2 using the closed form. %C A284982 Closely related to A127677, which has opposite signs and rows begin with 2 of alternating signs instead of 0. %H A284982 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CycleGraph.html">Cycle Graph</a> %H A284982 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LaplacianPolynomial.html">Laplacian Polynomial</a> %e A284982 First few polynomials are %e A284982 -x %e A284982 -4*x + x^2 %e A284982 -9*x + 6*x^2 - x^3 %e A284982 which give the triangle of coefficients: %e A284982 0, -1; %e A284982 0, -4, 1; %e A284982 0, -9, 6, -1; %e A284982 ... %t A284982 CoefficientList[LucasL[2 Range[10], Sqrt[-x]] - 2, x] // Flatten (* _Eric W. Weisstein_, Apr 06 2017 *) %t A284982 CoefficientList[2 (ChebyshevT[Range[10], 1 - x/2] - 1), x] // Flatten (* _Eric W. Weisstein_, Apr 06 2017 *) %t A284982 CoefficientList[FunctionExpand[2 (Cos[Range[10] ArcCos[1 - x/2]] - 1)], x] // Flatten (* _Eric W. Weisstein_, Apr 06 2017 *) %t A284982 CoefficientList[LinearRecurrence[{3 - x, -3 + x, 1}, {-x, (-4 + x) x, -(-3 + x)^2 x}, 10], x] // Flatten (* _Eric W. Weisstein_, Apr 06 2017 *) %Y A284982 Cf. A127677 (opposite signs and rows begin with +/2). %K A284982 sign,easy,tabl %O A284982 1,4 %A A284982 _Eric W. Weisstein_, Apr 06 2017