This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A284989 #35 Dec 24 2018 21:28:42 %S A284989 1,0,0,0,0,1,1,0,3,2,9,24,24,24,9,216,540,610,420,210,44,7570,18000, %T A284989 20175,13720,6300,1920,265,357435,829920,909741,617610,284235,91140, %U A284989 19005,1854,22040361,50223600,54295528,36663312,17072790,5679184,1337280,203952,14833 %N A284989 Triangle T(n,k) read by rows: the number of n X n {0,1} matrices with trace k where each row sum and each column sum is 2. %H A284989 Alois P. Heinz, <a href="/A284989/b284989.txt">Rows n = 0..14, flattened</a> %H A284989 <a href="/index/Mat#binmat">Index entries for sequences related to binary matrices</a> %F A284989 Let z1..zn be n variables and s1 = Sum_{k=1..n} zk, s2 = Sum_{k=1..n} zk^2, s12 = (s1^2 - s2)/2, fk = t*(s12 - zk*(s1 - zk)) + zk*(s1 - zk) for k=1..n, P_n(t) = [(z1..zn)^2] Product_{k=1..n} fk. Then P_n(t) = Sum_{k=0..n} T(n,k)*t^(n-k), n >= 3. - _Gheorghe Coserea_, Dec 21 2018 %e A284989 0: 1 %e A284989 1: 0 0 %e A284989 2: 0 0 1 %e A284989 3: 1 0 3 2 %e A284989 4: 9 24 24 24 9 %e A284989 5: 216 540 610 420 210 44 %e A284989 6: 7570 18000 20175 13720 6300 1920 265 %e A284989 7: 357435 829920 909741 617610 284235 91140 19005 1854 %e A284989 8: 22040361 50223600 54295528 36663312 17072790 5679184 1337280 203952 14833 %o A284989 (PARI) %o A284989 P(n, t='t) = { %o A284989 my(z=vector(n, k, eval(Str("z", k))), %o A284989 s1=sum(k=1, #z, z[k]), s2=sum(k=1, #z, z[k]^2), s12=(s1^2 - s2)/2, %o A284989 f=vector(n, k, t*(s12 - z[k]*(s1 - z[k])) + z[k]*(s1 - z[k])), g=1); %o A284989 for (i=1, n, g *= f[i]; for(j=1, n, g=substpol(g, z[j]^3, 0))); %o A284989 for (k=1, n, g=polcoef(g, 2, z[k])); %o A284989 g; %o A284989 }; %o A284989 seq(N) = concat([[1], [0, 0], [0, 0, 1]], apply(n->Vec(P(n)), [3..N])); %o A284989 concat(seq(8)) \\ _Gheorghe Coserea_, Dec 21 2018 %Y A284989 Cf. A001499 (row sums), A000166 (diagonal), A007107 (column 0). %Y A284989 Cf. A008290, A098825, A284990, A284991. %K A284989 nonn,tabl %O A284989 0,9 %A A284989 _R. J. Mathar_, Apr 07 2017