A285022 Numbers n such that A002088(n) < 3n^2/Pi^2.
820, 1276, 1926, 2080, 2640, 3160, 3186, 3250, 4446, 4720, 4930, 5370, 6006, 6546, 7386, 7450, 7476, 9066, 9276, 10626, 10836, 13146, 13300, 15640, 15666, 16056, 16060, 16446, 17020, 17466, 17550, 17766, 18040, 18910, 19176, 19230, 19416, 20736, 21000, 21246
Offset: 1
Keywords
Examples
A002088(820) = 204376, 3*820^2/(Pi^2) = 204385.091643... > 204376, thus 820 is in this sequence.
References
- Sukumar Das Adhikari, The Average Behaviour of the Number of Solutions of a Diophantine Equation and an Averaging Technique, Number Theory: Diophantine, Computational, and Algebraic Aspects: Proceedings of the International Conference Held in Eger, Hungary, July 29-August 2, 1996. Walter de Gruyter, 1998.
- Władysław Narkiewicz, Rational Number Theory in the 20th Century, Springer London, 2012, p. 215.
- M. L. N. Sarma, On the Error Term in a Certain Sum, Proceedings of the Indian Academy of Sciences, Section A, Vol. 3, No. 1 (1936), pp. 338-338.
Links
- Amiram Eldar and Giovanni Resta, Table of n, a(n) for n = 1..10000 (first 97 terms from Amiram Eldar)
- Paul Erdős and Harold N. Shapiro, On the Changes of Sign of a Certain Error Function, Canadian Journal of Mathematics, Vol. 3 (1951), pp. 375-385.
- R. A. MacLeod, The Minimum of Phi(x)/x^2, Journal of the London Mathematical Society, Vol. 1, No. 1 (1967), pp. 652-660.
- James Joseph Sylvester, Note sur le théoreme de Legendre citée dans une note insérée dans les Comptes rendus, Comptes rendus hebdomadaires des seances de l'Academie des sciences, Vol. 46 (1883), pp. 463-465.
- James Joseph Sylvester, On the Number of Fractions Contained in any "Farey series" of which the Limiting Number is Given, Philosophical Magazine, Series 5, Vol. 15, No. 94 (1883), pp. 251-257.
Programs
-
Maple
F:= ListTools:-PartialSums(map(numtheory:-phi, [$1..30000])): select(t -> is(F[t] < 3*t^2/Pi^2), [$1..30000]); # Robert Israel, Apr 21 2017
-
Mathematica
s = 0; k = 1; lst = {}; While[k < 50001, s = s + EulerPhi@k; If[s*Pi^2 < 3 k^2, AppendTo[lst, k]]; k++]; lst
Comments