A285056 a(n) = the first positive integer, not ending in zero, whose cube has a substring of exactly n identical digits.
1, 11, 126, 753, 1923, 32183, 134708, 1487139, 23908603, 215443469, 106917811, 15056809703, 27354803113, 681048619195, 361160395301
Offset: 1
Examples
a(3) = 126, as 126^3 = 2000376 contains a digit (0) repeated n (3) times.
Crossrefs
Cf. A167712.
Programs
-
Mathematica
a[n_] := Block[{k=1}, While[Mod[k, 10] == 0 || ! MemberQ[Length /@ Split[ IntegerDigits[ k^3]], n], k++]; k]; Array[a, 8] (* Giovanni Resta, Apr 10 2017 *)
-
Python
import collections import re cur = 1 def repeat( num , reps ): r = str(num) n = 1 while n < reps: r += str(num) n += 1 return r; while True: k = 0 while k < 10: rep = repeat(k,9) while re.search(rep, str(cur**3)) != None: if re.search(rep + str(k), str(cur**3)) == None: print(str(cur) + ", " + str(cur**3)) rep += str(k) else: rep += str(k) k += 1 cur += 1 if cur % 10 == 0: cur += 1 #note: this will display all cubes with a substring of 9 repeated digits. To change this to n repeats, replace repeat(k,9) with repeat(k,n).
Extensions
a(10)-a(15) from Giovanni Resta, Apr 10 2017