A285061 Sheffer triangle S2[4,1] = (exp(x), exp(4*x) - 1).
1, 1, 4, 1, 24, 16, 1, 124, 240, 64, 1, 624, 2656, 1792, 256, 1, 3124, 26400, 33920, 11520, 1024, 1, 15624, 250096, 546560, 331520, 67584, 4096, 1, 78124, 2313360, 8105664, 7822080, 2745344, 372736, 16384, 1, 390624, 21132736, 114627072, 165398016, 88940544, 20299776, 1966080, 65536, 1, 1953124, 191757120, 1574682880, 3270274560, 2529343488, 863256576, 138215424, 10027008, 262144
Offset: 0
Examples
The triangle T(n,m) begins: n\m 0 1 2 3 4 6 7 8 9 0: 1 1: 1 4 2: 1 24 16 3: 1 124 240 64 4: 1 624 2656 1792 256 5: 1 3124 26400 33920 11520 1024 6: 1 15624 250096 546560 331520 67584 4096 7: 1 78124 2313360 8105664 7822080 2745344 372736 16384 8: 1 390624 21132736 114627072 165398016 88940544 20299776 1966080 65536 ... Three term recurrence: T(4, 1) = 4*1 + (1 + 4*1)*124 = 624. Recurrence for row polynomial R(3, x) (Meixner type): ((1 + 4*x) + 4*x*d_x)*(1 + 24*x + 16*x^2) = 1 + 124*x + 240*x^2 + 64*x^3. Boas-Buck recurrence for column m = 2, and n = 4: T(4, 2) = (1/2)*(2*(2 + 4*2)*T(3, 2) + 2*6*(-4)^2*Bernoulli(2)*T(2, 2)) = (1/2)*(20*240 + 12*16*(1/6)*16) = 2656. - _Wolfdieter Lang_, Aug 11 2017
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..11475, rows n = 0..150, flattened.
- Paweł Hitczenko, A class of polynomial recurrences resulting in (n/log n, n/log^2 n)-asymptotic normality, arXiv:2403.03422 [math.CO], 2024. See p. 9.
- Wolfdieter Lang, On Sums of Powers of Arithmetic Progressions, and Generalized Stirling, Eulerian and Bernoulli numbers, arXiv:1707.04451 [math.NT], 2017.
Crossrefs
Programs
-
Mathematica
Table[Sum[Binomial[n, k]*4^k*StirlingS2[k, m], {k, 0, n}], {n, 0, 20}, {m, 0, n}] // Flatten (* Indranil Ghosh, May 06 2017 *)
-
PARI
T(n, m) = sum(k=0, n, binomial(n, k)*4^k*stirling(k, m, 2)); for(n=0, 20, for(m=0, n, print1(T(n, m),", ");); print();) \\ Indranil Ghosh, May 06 2017
Formula
Three term recurrence (from the conversion property mentioned above, with [d,a] =[4,1]): T(n, -1) = 0, T(0, 0) = 1, T(n, m) = 0 if n < m. T(n, m) = 4*T(n-1, m-1) + (1 + 4*m)*T(n-1, m) for n >= 1, m = 0..n.
T(n, m) = Sum_{k=0..m} binomial(m,k)*(-1)^(k-m)*(1 + 4*k)^n/m!, 0 <= m <= n, satisfying the recurrence.
E.g.f. of the row polynomials R(n, x) = Sum_{m=0..n} T(n, m)*x^m: exp(z)*exp(x*(exp(4*z) - 1)). This is the e.g.f. of the triangle.
E.g.f. for the sequence of column m: exp(x)*((exp(3*x) - 1)^m)/m! (Sheffer property).
O.g.f. for sequence of column m: (4*x)^m/Product_{j=0..m} (1 - (1 + 4*j)*x) (by Laplace transform of the e.g.f.).
T(n, m) = Sum_{k=0..n} binomial(n, k)* 4^k*Stirling2(k, m), 0 <= m <= n, where Stirling2 is given in A048993.
A nontrivial recurrence for the column m=0 entries T(n, 0) = 4^n from the z-sequence given above: T(n,0) = n*Sum_{j=0..n-1} z(j)*T(n-1,j), n >= 1, T(0, 0) = 1.
Recurrence for column m >= 1 entries from the a-sequence given above: T(n, m) = (n/m)* Sum_{j=0..n-m} binomial(m-1+j, m-1)*a(j)*T(n-1, m-1+j), m >= 1.
Recurrence for row polynomials R(n, x) (Meixner type): R(n, x) = ((1 + 4*x) + 4*x*d_x)*R(n-1, x), with differentiation d_x, for n >= 1, with input R(0, x) = 1.
Boas-Buck recurrence for column sequence m: T(n, m) = (1/(n - m))*((n/2)*(2 + 4*m)*T(n-1, m) + m*Sum_{p=m..n-2} binomial(n, p)*(-4)^(n-p)*Bernoulli(n-p)*T(p, m)), for n > m >= 0, with input T(m,m) = 4^m. See a comment and references in A282629. An example is given below. - Wolfdieter Lang, Aug 11 2017
Comments