This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A285062 #6 Apr 18 2017 16:34:29 %S A285062 1,-1,7,-81,3853,-25721,1862773,-52571875,2828694491,-20554196553, %T A285062 2489317910533,-36843139557745,187344440646279463,-200535626786994961, %U A285062 15853768141768274581,-319644021424695652161,927777140067161706072467,-1412565248386878259675625,2151379749437782936765977859 %N A285062 Numerators of the exponential expansion of (4/(log(1+x)))*(1-1/(1+x)^(1/4)). %C A285062 This gives the numerators of the z-sequence for the Sheffer triangle (exp(x), exp(4*x) - 1) shown in A285061. For the notion and use of a- and z- sequences for Sheffer triangles see the W. Lang link under A006232. The a-sequence of this Sheffer triangle is given by 4*A006232/A006233. %C A285062 For the nontrivial recurrence for the sequence {1^n} of column m=0 of A285061 by the z-sequence see the example n=4 below. %F A285062 The e.g.f. of the rationals r(n) = a(n)/A285063(n) is (4/(log(1+x)))*(1 - 1/(1+x)^(1/4)). %e A285062 The rationals r(n) = a(n)/A285063(n), n >= 0, start: 1, -1/8, 7/48, -81/256, 3853/3840, -25721/6144, 1862773/86016, -52571875/393216, 2828694491/2949120, -20554196553/2621440, ... %e A285062 The z-Recurrence for A285061(4, 0) = 1 is 1 = 4*(1*1 + 124*(-1/8) + 240*(7/48) + 64*(-81/256)). %Y A285062 Cf. A006232, A006232/A006233, A285061. %K A285062 sign,frac,easy %O A285062 0,3 %A A285062 _Wolfdieter Lang_, Apr 13 2017